
BERT
Base Equation Resolution Theory

Sudoku Solving and Scoring

Bernd Karl Rennhak

Version 0.2

Discussion Paper
Comments, Ideas, Corrections are welcome!

mailto: logel@logelium.de

© 2016 www.logelium.de

C O N T E N T S

1. preface 5

1.1 About Sudoku 5

1.2 Questions and some Answers 5

1.3 General Remarks 6

1.4 Current Status of some Issues 7

2. foundation 9

2.1 Solution 9

2.2 Resolution Theory 9

2.3 The Math Model 10

2.4 Patterns and Eliminations 15

2.5 Pattern 18

3. pattern calculation 21

3.1 Easy Examples 21

3.2 Base Elimination 24

3.3 Base Array Calculation 24

3.4 Base Reduction 26

3.5 Matrix Elimination 27

3.6 Single Elimination 28

3.7 Odd Ring Calculations 29

3.8 Odd Loop Calculation 31

3.9 Generic Array Calculations 32

4. base equation resolution theory 35

4.1 Notation 35

4.2 Algorithms 37

4.3 Resolution Path 38

5. scoring 41

5.1 Scoring Rules 41

5.2 Scoring Examples 42

6. expression calculations 45

6.1 Group Links 45

6.2 Composite Rings 46

6.3 Cascaded Rings 48

6.4 Network with Rings 49

6.5 Calculated Matrix 49

6.6 Exocet 50

7. equation re-use 54

7.1 Re-Use of Base Equations 54

7.2 Double Use 54

7.3 Partial Re-Use 55

CONTENTS 4

8. pattern decomposition 57

8.1 Fragments 57

8.2 Translation 58

8.3 Sub-Expressions 60

9. strategy 62

9.1 Simplest First 62

9.2 One-Step Look Ahead 62

9.3 Positioning Issues 63

9.4 Position Independence 63

9.5 Elimination Life-cycle 65

10. optimization 67

10.1 First Results 67

10.2 Concept 67

10.3 Input 68

10.4 Verification 70

10.5 Optimization Result 71

11. minimality 73

11.1 Minimal Givens 73

11.2 Minimal Equations 73

12. summary 75

13. final remarks 77

13.1 Outlook 77

13.2 Missing Things 77

Abbreviations 78

1
P R E FA C E

1.1 about sudoku

It still remains a mystery to me why a mathematical problem that requires a
reasonable amount of logic to solve attracts millions of people around the
globe.

Definition 1.1. Sudoku Puzzle Statement

Fill a 9 by 9 square that contains already some given numbers in a way, that
every row, column and box contains all numbers from 1 to 9.

This well known problem statement says what a correctly filled Sudoku grid
looks like. It says nothing about how such a grid should be obtained.

1.2 questions and some answers

This document intends to present a view on Sudoku solving that is different
from the traditional and well known concepts. It starts from the very basics
and answers the following questions.

• What is a solution ?

• What is a resolution path ?

• What are the steps of a resolution path ?

• How to compare resolution paths ?

Although these questions seem very simple, there is no consensus about the
answers in the Sudoku community. Especially the last is the most important,
because “simplicity” is only an informal or subjective matter unless there is
a well defined measuring method. A consensus would require an absolute
answer to these questions. This is asking for too much. This paper introduces
a Sudoku theory (BERT) based on very few principles in a consistent way.
So the answers to the above questions make only sense within the theory
framework. Although a principle based theory inevitably comes with some
limitations, the solving scope is large. There is no unsolvable Sudoku puzzle
in BERT - afaik.

It is more than fair to clearly mention what this document is not intended
for or concerned with.

• No new tools or support for improved manual solving will be intro-
duced. There are already enough books and web pages published for
this purpose.

• It is not intended to give methods to find eliminations in the first place,
although there are aspects that may inspire some new ideas. The results
of existing solvers are used instead.

• It is not in the scope of this document, to present a concept for an
improved solver. But the results presented show that there is a lot of
room for improvements.

• There is no new concept to generate puzzles.

1.3 general remarks 6

This document addresses a reader already familiar with advanced Sudoku
solving concepts that are capable of solving “hard” Sudoku puzzles. These
are usually too difficult for humans and require computer aided procedures.
Despite starting from elementary definitions, understanding the document
requires knowledge of the standard solving methods (singles, pairs, triples,
wings . . .), more sophisticated methods (fish patterns, chains, coloring, ALS,
nice loops, . . .) and of recursion techniques. The concepts of BERT are
especially useful for “hard” puzzles, but of course they work for all the
others too.

Moreover the solving strategies developed by Denis Berthier (DB)1 using
nrczt-chains, whips, braids, etc are referenced frequently. The concepts that
Alan Barker (AB)2 used with his solver are also important. Both had
significant impact on my ideas. Important work on Sudoku generation and
rating was done by Glenn Fowler (GSF)3. I do not mention all the others,
who brought ideas and inspiration into the Sudoku discussion. Although the
discussion intensity has decreased significantly during the last years, there
are still interesting entries in The New Sudoku Players Forum (SPF)4.

The terminology of traditional Sudoku solving can be found in Sudopedia
5.

This document tries to avoid conflicts with terms defined there as much as
possible.

1.3 general remarks

1.3.1 Traditional Sudoku Solving

The phrase traditional will be always used as a reference to the various meth-
ods and logical constructions used with manual solving. This designation is
not meant to devalue their importance. There is also no precise definition,
but rather an ongoing discussion. Traditional solving methods are merely a
toolbox of unrelated and at the most partially ordered methods. The method
set is also subject to personal preferences.

1.3.2 Finite Infinity

There is a common mathematical joke that all finite problems are trivial,
because they can be proved by checking all possible combinations always.
Although this is very true, this truth is no help when it comes to solve even
moderate large problems practically. The number of combinations is simply
by far too large to exhaust, even with computer support. This may be hard to
accept for some people believing that computers can do anything. Sudoku is
a perfect example that this is untrue. Most of the statements that begin with
“All Sudoku (or something related) have the property of ...” are theoretically
provable, but practically not.

Often a lot of work was invested to find counter-examples of such statements
without finding one. So the statement is proven neither true or false, but this
unsatisfactory result has still some value. The more moderate statement “All
Sudoku of a large list including very hard and complex problems have the
property of ...” is appropriate for such cases.

In this document we will use the abbreviation “All(?) Sudoku ...”, because
this situation occurs quite often.

1 Denis Berthier www.carva.org/denis.berthier
2 Alan Barker www.sudokuone.com
3 Glenn Fowler gsf.cococlyde.org
4 The New Sudoku Players Forum forum.enjoysudoku.com
5 Sudopedia sudopedia.enjoysudoku.com/Terminology.html

www.carva.org/denis.berthier
www.sudokuone.com
gsf.cococlyde.org
forum.enjoysudoku.com
sudopedia.enjoysudoku.com/Terminology.html

1.4 current status of some issues 7

1.4 current status of some issues

1.4.1 Severity Rating

There are a number of concepts for Sudoku that try to measure the severity
of a Sudoku puzzle. All of these concepts are based on properties of the most
complex elimination pattern only, afaik. The calculated complexity value is
slightly different for the various types of ratings, but mainly depends on the
number of true candidates that can exist in an elimination pattern. These
ratings are reflecting the intuitive estimation of severity to find a solution
more or less.

But we cannot ignore that something is missing, if all but one resolution step
is ignored when calculating the severity. Solution paths usually consists of
several hard elimination steps.

1.4.2 Resolution Path Scoring

If we talk about severity or complexity of Sudoku, one should not confuse
the complexity of the process finding a solution and the complexity of the
solution path itself. Maybe it’s more clear to explain this for a problem from
a completely different domain. If a navigation computes a path on a street
map, we easily see that the effort of computing the path and the effort to
drive the path is not the same thing. Despite of that we can determine the
quality of the path in terms of length, estimated time, fuel consumption,
etc perfectly without knowing how the navigation was computed. From
this perspective Sudoku is no different. We want to assess the quality of
a resolution path without using the information what rules or strategies
are used to find it. Up to now there seem to be no convincing concept of
comparing resolution paths of the same Sudoku problem. Although the
claim “my eliminations are simpler” is frequently used in many discussions,
a substantial definition of “simplicity” is painfully missing. This issue among
others is addressed in this document.

What are the main obstacles?

• There is no generic definition of “elimination rule”.

• There is no common unit of measurement.

• The discussion of “ordering the rules” led to nothing.

• Elimination methods may clear many target candidates.

• Similar patterns may share significant parts.

At least one thing should be clear: A numerical value for the complexity of a
resolution path should depend on all steps, not just the severest one.

1.4.3 Solvers

There are some Sudoku solver of reasonable quality that should be mentioned
explicitly.

• Sudoku Explainer by Glenn Fowler

Seems to solve any puzzle. Uses lengthy dymanic forcing chains and
dynamic contradiction chains for hard puzzle.
Does not use large matrix (base-cover) patterns and no exocet patterns.
Works step-by-step and offers alternatives.

• Xsudo by Alan Barker

Fails on very hard puzzzles. Has good performance and nice graphics.

1.4 current status of some issues 8

Does not use or find large matrix or exocet patterns, avoids overlapping
bases.6

Generates one path only. Allows resolution state editing.

• PBCS Project by Denis Berthier

Uses a special set of pattern constructions (nrczt-chains,whips,braids)
and explores the solving limits of these patterns.
So it does not solve all puzzle by design.

• many other that automate methods of manual solving.
All these solvers have their limit, when all predefined methods are
exausted.
Then they switch to recursion (brute force) or fail.

All of them give litte to none explanation, why a particular step was chosen
in a situation.

1.4.4 Open Question

The very simple Sudoku

000609000001000700020000090800050007700040006400020008030000020005000300000408000

is solved by 14 box-line interactions and singles only. Alternatively there is a
sequence with one hidden pair (numbers 48 in box 7) and 3 box-line interactions.
This leaves us with the question how to trade 11 box-line eliminations against
1 pair. Without a consistent framework that can deal with wide-ranging
kinds of resolution paths this question is impossible to answer. The simplistic
approach to define box-line simpler than pair in an a-priori manner has to be
rejected. Although this example is none of “hard” Sudoku puzzles, it raises
difficult questions already. In a way it demonstrates the difference between
local and global optimization.

The proposal for a resolution path complexity requires some theory, ter-
minology and some preparations. These are explained in the following
chapters.

6 Terms used here will be explained in later chapters.

2
F O U N D AT I O N

This chapter contains some basic definitions and terminology and considera-
tions that will be useful later.

2.1 solution

The solution is concerned with the fact that the final grid is correct, nothing
else. If the grid is filled with numbers and the conditions of puzzle statement
1.1 are met, it’s a valid solution. It is not required to reveal how the solution

is obtained. So if you assume uniqueness or assume a backdoor or try T&E
with some candidates or look-up solutions in a table or snoop in the back
pages of the Sudoku book, it’s all OK. A solution is not less valid if produced
by dubious or even by wrong methods.

If the Sudoku problem statement is expressed with equivalent math models,
each model comes with an own version of solution description.

2.2 resolution theory

Key Point What is the value of a resolution theory ?

Any Sudoku problem can be solved with an algorithm that recursively sets
numbers in the grid until a solution is found or a contradiction to one of
the rules is met. If the recursion is also combined with preferring bi-value
cells and single eliminations1 and possibly other easy to spot logical methods,
such recursion has low depth and is fairly efficient. So there seem to be
little need for other solution methods unless there is a secondary motivation.
The recursion method also detects for an arbitrary Sudoku grid, if there is
a unique solution or if a hidden contradiction allows no solution. This and
any other algorithm with the same capability is called universal solver in the
following. Such solvers a necessary to perform uniqueness checks on Sudoku
problems.

The term resolution theory was brought up by DB and defines the “how” part
of a solution. This part is the resolution path consisting of resolution steps.
Because the resolution steps depend on each other, a resolution path is a graph
where the resolution steps are edges and the the nodes are resolution states.
This directed graph reflects the dependencies of resolution steps.

2.2.1 Traditional

Traditional solving uses a toolbox of methods. Although there is a universal
method to solve any Sudoku, there are a number of additional requirements
how a solution should be reached. Traditional solving stems from manual
solving and does not see itself as resolution theory, but instead tries to declare
“right” and “wrong” ways for solving. The following arguments to exclude
recursions or back-doors are found frequently.

1. use only “pure logic” There is no pure or
impure logic, there is
only correct and
incorrect logic.

2. “guessing” is not allowed

3. steps must be “as simple as possible”

1 Assumed to be well known.

2.3 the math model 10

4. use only “constructive methods”

5. the path must be “easy to explain”

The first one is obscure, but the others have some relevance. Before discussing
the remaining requirements, it should be clear that any such requirement
imposes restrictions on the resolution. These are not part of the original
Sudoku puzzle statement. So why should we burden the solving with such
additional requirements? There should be a very good reason. The problem
here is not the restrictions itself but the missing goal and motivation for it.

A negative approach by excluding unwanted methods also invites difficul-
ties. Long forum discussions about “what exactly is guessing” is only one
example.

Traditional solving is not universal unless a method is added to the toolbox
that is already universal on its own.

2.2.2 Property View

A decent resolution theory should have a clear an unambiguous definition
of its resolution steps. This approach also keeps some methods out, but
its a more constructive way to achieve this. There will be always someone
shouting “my favorite method is not included”, but this is missing the point.
The importance of a well defined resolution theory lies in the fact that results
are comparable. Common properties of the results are a prerequisite for
comparing. So a resolution theory assigns properties to steps or resolution
paths, but these are relative to the resolution theory context. Comparing to
properties of other resolution theories makes no sense usually.

So the main purpose of a resolution theory is to define comparable properties
to objects of that theory.

A resolution theory is not meant to be universal from the start. It is no error
that some Sudoku puzzles are not solvable. If the scope of solvable puzzles
inside a theory is too small, this theory has no relevance of course.

2.2.3 BERT Intro

The following chapters present a resolution theory that aims at assigning a
numerical complexity value to each resolution step and finally to the whole
resolution path. All necessary solving restrictions of BERT are devoted to
this goal.

There are two main parts. The first defines the scope by defining the reso-
lution steps. These are the building blocks used for BERT resolutions. The
second part defines a metric on these steps to make BERT resolution parts
comparable. This does not exclude possible alternative metrics on the steps,
but is no issue here.

2.3 the math model

Key Point Transformation of the informal Sudoku description into a formal one.

The original definition of Sudoku is informal. There are different ways to
convert Sudoku problems into an equivalent abstract mathematical model.
These models usually work with candidates representing one of the possible
symbols in a cell of the grid. Any cell of the grid has nine candidates, so the
complete empty Sudoku grid contains 9 ∗ 9 ∗ 9 = 729 candidates.

2.3 the math model 11

2.3.1 Boolean Model

The most obvious modeling is mapping the two possible candidate values
into Boolean values and apply Boolean algebra methods to determine all
candidate values to solve the Sudoku. This is mostly done by applying
“methods” that bundle some logical implications. The main drawback of
this model gets evident when formulating the equation e.g. for a row. Only
one of the n = 9 candidates d1, . . . , dn in that row can be TRUE. So a de-
scription with Boolean variables needs an OR-equation d1 ∨ . . .∨ dn = TRUE
and additionally n ∗ (n− 1)/2 equations with pairwise NAND equations
∀i 6=j¬di ∧ ¬dj = TRUE.

So implications with this model are easy with bi-value relations only. The
model works good with alternating implication chains or similar construc-
tions. With complex networks the calculations tend to get cumbersome and
unpleasant.

2.3.2 CSP Model

The modeling used by Denis Berthier relies on so-called 2D-variables that
correspond to cells, rows, columns and boxes. There are 324 of such 2D-
variables and their solution value is the index of the true candidate. Each
candidate connects the values of the four crossing 2D-variables with an
appropriate equation. This model views a Sudoku problem as a constraint
satisfaction problem in the first place. It is very special and not used elsewhere.

For details refer to the personal web pages for various information.

2.3.3 Arithmetic Model

The idea to map Boolean values into integers is not new but rarely used for
Sudoku solving. Such approach might be surprising at first sight, because
the only relevant integers are 0 for invalid and 1 for valid candidates. But
the application of this idea to Sudoku problems will make the calculation of
complex elimination networks easier to understand. Other advantages of the
arithmetic model will become obvious later.

It is the model of choice in BERT. The following definitions are the basics of
that model.

Definition 2.1. Candidate

The index set X = {1, 2, 3, 4, 5, 6, 7, 8, 9} contains the Sudoku symbols.
The candidate representing the number n in the cell with row index r and
column index c is denoted by dnrc, where n, r, c ∈ X
A candidate is an integer variable that has two possible values: 0 or 1.
The set D contains all candidates.

Remark 2.2. It is important to note that candidate variables are integer values.
Usually candidates are used only as long as their value is unknown, but
in the context of this model we keep the candidate variables all the time
regardless of their status.

Remark 2.3. The members of the index set X are actually symbols with no
meaning other than identity. Any other symbol set will do.

Then we define equations to be satisfied for the candidates:

2.3 the math model 12

Definition 2.4. Native Base Equation of Cell, Row, Column, Box

Cell at row r ∈ X and column c ∈ X

Nrc = ∑
n∈X

dnrc = 1

Row r ∈ X of number n ∈ X:

Rrc = ∑
c∈X

dnrc = 1

Column c ∈ X of number n ∈ X:

Cnc = ∑
r∈X

dnrc = 1

Box b ∈ X of number n ∈ X:

Bnb = ∑
z∈X

dnbz = 1

The function (b, z) = f (r, c) must be a one-to-one mapping of X × X into
itself.
The set NBE contains all native base equations.

Remark 2.5. The mapping function for the boxes can be assumed to define
the traditional 3*3 sub-grids, although this is not required for the subsequent
considerations. Boxes may have any shape, but none should match a whole
row or column.

The definitions for row, column and box are clearly direct translations from
the Sudoku puzzle statement 1.1. The cell definition is different because
cells are not mentioned verbatim. The phrase “fill the grid” is interpreted
such that each position in the grid contains exactly one number, not two or
more, and no cell is empty. Although this sounds rather hair-splitting, it is
necessary for an exact and unambiguous definition.

Native base equations (nbe) are defined by building the arithmetical sum of it’s
candidate variables. An empty Sudoku grid contains 81 native base equations
for each set of cells, rows, columns and boxes. So there is a total number of
324. It is an important note that the equations for the four different kinds are
structurally equal. The definitions 2.1 and 2.4 allow a formal re-definition
of a Sudoku solution in the context of the arithmetic model in a very simple
and straightforward way.

Definition 2.6. Solution

A given is a candidate of the initial puzzle with value 1 .
The set G ⊂ D contains the givens of a Sudoku problem.
The set D is a solution, if all candidates of D have a definite value and the
expression ∀g ∈ G{g = 1} ∧ ∀nbe ∈ NBE{nbe = 1} is satisfied.

Remark 2.7. Some analysis of Sudoku problems show that the solution expres-
sion is (always?) over-defined. Some of the nbe are redundant even when the
problem has a unique solution. The redundancy of the puzzle statement is
investigated in chapter chapter 11. It is also the cause of some special effects
that occur in large elimination patterns.

Conjecture 2.8. All(?)2 Sudoku with a unique solution need at least 17 givens.

This conjecture was or is still a subject of intense investigations.

2 see section1.3.2 explaining “All(?)”

2.3 the math model 13

The main idea of BERT is to treat Sudoku as system of 324 linear Diophantine
equations. Combined with the value restrictions of the candidates such a
system may have one, many or no solutions naturally. Sudoku with a unique
solution are of course the most interesting ones. Uniqueness is a delicate
issue that sparked some disputes in the Sudoku community and is discussed
later.

The central theme of this document is about resolution paths where all steps
are based on arithmetic operations on equations of that system. Only such
resolution paths will be accepted. We will see that a few – but not many
– types of operations are sufficient to describe BERT resolution path steps.
These steps are not identical to what is called “eliminations” traditionally,
without explaining the how and why too much at this point. This is a topic
for later chapters.

Before details of the BERT resolution steps can be discussed, some more
definitions are needed.

Definition 2.9. (Calculated) Link Equation

Any set of variables LE = {p1, . . . , pn} build a link equation, if

1. all variables have values 0 or 1.

2. the condition

∑
pi∈LE

pi ≤ 1

is verified by an appropriate calculation.

Naturally all subsets of native base equations are link equations, but the defi-
nition is not restricted to that case. Situations where this makes sense are
shown later. Note that this and the following definitions refer to “variables”
and not just candidates.

Remark 2.10. The term linked candidates is also used for a link equation regard-
less how many candidates are involved. The term is used in a generalized
manner unlike the well known bi-value relations between candidates.

Definition 2.11. (Calculated) Base Equation

Any set of variables BE = {p1, . . . , pn} build a base equation, if

1. all variables have values 0 or 1.

2. the condition

∑
pi∈BE

pi ≥ 1

is verified by an appropriate calculation.

Remark 2.12. If the unqualified term base equation (BE) or link equation is used,
it means either a native base(link) equation or a calculated base(link) equation.

The are situations where calculated base equations are equal to one. In most
cases this is not significant, but there are special cases where it matters. They
are called strict base equations and all their subsets are link equations.

Definition 2.13. Base Set and Link Set

For each base equation or link equation the base set or link set is the set containing
the variables of that equation.
The same descriptors are used for corresponding equations and set.

Now we have three levels of meaning for the term cell. First a cell is a
placeholder in the Sudoku grid, second a set of candidates and third a cell is
a base equation. Although the type of each semantic level is clearly different

2.3 the math model 14

from the others, there exits a close correlation. This justifies the use of the
same descriptors. The type is determined from the context or in doubt is
given explicitly. The same is similarly true for rows, columns and boxes.

Remark 2.14. Equations are freely used as arithmetic expressions, constraints
or as sets of candidates. If we speak of an intersection of two base equations it
means the intersection of the two corresponding base sets, likewise the union
of equations means the union of the candidate sets. Whether equations are
used arithmetically or as sets is context dependent.

Definition 2.15. Group Variables

Any set of variables can form a group variable and the value of this group is
the maximum of all variable values.

The immediate consequences are:
The value of a group variable is zero if all member variables are zero and
otherwise one.
A group variable is linked to another variable, if all member variables are
linked to this variable.
A group variable is linked to another group variable, if all members of the
first are linked to all members of the second.
Equations with group variables are weaker equations as the original one. For
example an equation

d1 + d2 + . . . + g1 + g2 + g3 + . . . + dn = 1

has less solutions than

d1 + d2 + . . . + MAX(g1 + g2 + g3) + . . . + dn = 1

Remark 2.16. Group variables can occur in base equations and link equations
and calculations treat them like any other variables. After some members
are glued together into a group, the parts become invisible for subsequent
calculations.
Traditional Sudoku solving is working with groups all the time, so this
definition seems to be common sense. But this overlooks that the definition
is not restricted to box intersections. Member variables may also be group
variables itself. Why such generalization makes sense and is useful and even
sometimes necessary, will be explained where it is relevant.

2.3.4 In-Equations

In the following the term equation is used intentionally even if it is actually
an in-equation of the type ≤ 1 or ≥ 1. These in-equations can always be
padded by a special interval variable to form an actual equation, because
the missing part is explicit for all cases. This is true because in the BERT
context all in-equations are derived in possibly multiple steps from native
base equations.

d1 + . . . + d9 = 1 ⇒ d1 + d2 + d3 ≤ 1 ⇔ d1 + d2 + d3 + [0, 1] = 1

All additions and subtractions performed during pattern calculations can be
done using appropriate interval values and yielding the same result. But the
increased effort does not bring more benefit. So the use of the greater/less
symbols should be seen as shorthand for the full equations.

2.3.5 Naming Conventions

BERT uses the short nrc-notation for candidates: 123 is the candidate for
number 1 in row 2 and column 3. Grouped candidates are enclosed in

2.4 patterns and eliminations 15

round brackets: e.g. 12(789). Alternatively groups can be written as sum.
e.g. 12(789) = (127 + 128 + 129) = (12(79) + 128).So terms without letters
always denote candidates or groups of candidates.

Base equations, link equations, base sets and link sets have the same names. The
type is determined by the context or explicitly mentioned.

Cell at row r and column c : RrCc (e.g. R1C2 is cell in row 1 and column 2)

Row r of number n : nRr (e.g. 7R5 is number 7 of row 5)

Column c of number n : nCc
Box b of number n : nBb (Boxes are indexed from top left to bottom right)

Several related objects can be written in an abbreviated manner for conve-
nience. The term R1C389 denotes the three cells R1C3, R1C8, R1C9, the term
127R8 is equal to 1R8, 2R8, 7R8.

This is part of the full BERT notation defined in section4.1 .

2.4 patterns and eliminations

Key Point What is a meaningful elimination ?

Traditional Sudoku solving works with a set of methods, sometimes also called
rules or patterns synonymously. So far we avoided conflicts with traditional
terminology, but the term pattern will be defined in a different way in
the BERT context. Most methods reflect frequently occurring situations.
Traditional methods can be described roughly like this:

A method is a logic fragment describing conditions for some related con-
straints. If these conditions are satisfied some associated candidates can be
cleared. The proof that such a method is working correctly, is done only
once using the defining conditions. So a solver only needs to check, if the
entry conditions for a method are satisfied in the current situation. There are
simple methods having a fixed number of equations and conditions, such are
pairs, triples, XYZ-wings. Other have a dynamic size, like alternate implications
chains, nice loops or braids. Many methods inventions are motivated to support
manual solving, but especially the dynamic methods can be well beyond the
capability of humans.

A lot of work was done trying to name and classify methods, but there
seem to been no consistent system that brings methods completely into
a meaningful order. A different systematic approach was done by DB
developing nrczt-chains, whips, braids with many extensions. Unfortunately
the braid system does not solve all known Sudoku, not even with some
extensions.

The term pattern in BERT will be used for individual arrangements of candi-
dates that satisfy some conditions. These may or may not be associated with
traditional methods. To explain this we need an excursion into sub-puzzles
that will replace methods somehow.

2.4.1 Sub-Puzzles

Take a Sudoku with a unique solution. Consider any resolution state where
are still unresolved candidates of number x. There is a rarely used traditional
method called pattern overlay3, where all valid configurations of number
x are stacked on top of each other. Candidates that match none of these
configurations can be cleared. The interpretation preferred here views such
method as a sub-puzzle consisting of all base equations of number x. Each
valid configuration of this sub-puzzle is a solution of the defining base
equations. We can extend this idea to sub-puzzles of two, three or more
numbers, but there is a little more to consider. The base equations of numbers

3 see http://sudopedia.enjoysudoku.com/Pattern_Overlay_Method.html

http://sudopedia.enjoysudoku.com/Pattern_Overlay_Method.html

2.4 patterns and eliminations 16

x, y, z. . . . need to completed by all link equations containing the numbers.
Again we build all solutions of this bundle of equations.and probably find
many of them, because with less constraints than the original puzzle there is
no uniqueness any more.
Now we investigate these solutions for common properties. If for example a
dedicated candidate is zero in all of the solutions, this candidate must also
be zero in the unique solution of the whole Sudoku. Why? If we add the
constraints we ignored for a while by and by again, the number of solutions
will shrink and finally arrive at the unique solution. None of the missing
constraints can create a contradiction, because we know that one solution
exists definitely. What we do not know whether we can find a method in our
method repository that can justify the elimination of the candidate. We may
consider that “finding all solutions of number plains x, y, z. . . .” is a method
itself, but this is very questionable. The problem is not the correctness but
the redundancy of the construction.
If on the other hand a dedicated candidate is 1 in at least one of the solutions
of the sub-puzzle and zero in the full puzzle, it is absolutely impossible to
find an elimination method for that candidate using only numbers x, y, z.
This is because the selected solution would be always a counter-example for
any attempt to apply such a method.
Generalizing this idea leads to the definition of sub-puzzles of Sudoku
resolution states:
Definition 2.17. Sub-Puzzle

Let P be the set of equations that describe the relations of all candidates of a
resolution state.
S is a sub-puzzle of P and likewise P is a super-puzzle of S, if S is defined by a
set of equations that are also valid in P.

In contrast to a resolution state containing only native base equations, a
sub-puzzle may incorporate other types of equations also. Sub-puzzles may
contain sub-sub-puzzles. These are also sub-puzzles of the resolution state.
The definition of group variables fits in consistently.

Theorem 2.18. Solution Inheritance
If an arbitrary expression in a sub-puzzle S is valid for all solutions of S, then this
expression is also valid in all solutions of all super-puzzles P.

Proof. Almost trivial. Any solution of P is also a solution of S, because all
equations of S are valid in P. So a solution in P that violates the selected
expression creates a contradiction.

Remark 2.19. The solution inheritance does not imply that a solution of the
super-puzzle exists at all. But if a sub-puzzle has no solutions, none of the
super-puzzles has solutions.
The idea is to describe eliminations by sub-puzzles instead of methods. A
sub-puzzle where a specific candidate is zero in all solutions clearly justifies
the elimination of the candidate.

2.4.2 Equation Minimality

Any elimination candidate of a resolution state can be confirmed by con-
structing a sub-puzzle by accumulating more and more equations. This is
absolutely trivial but also useless.
Sub-puzzles related to the logical network of many traditional methods
cannot be reduced by any candidate. If we build a sub-sub-puzzle with
one candidate less, the target(s) can reach non-zero values. We already
presented a previous attempt for an abstract elimination pattern definition
named universal elimination4. An universal elimination is any minimal set of

4 see Sudoku forum

2.4 patterns and eliminations 17

candidates capable of justifying an elimination of one target. It is an attempt
to have a single abstract definition of an elimination pattern. This definition
runs into trouble for various reasons. But nevertheless the idea points into
the right direction.

Provided that the elimination is specified by a set of base equation and
a set of link equations, a minimal candidate elimination has a number of
interesting properties.

1. Each candidate is member of at least one base equation or is a target.

2. Each candidate is member of at least one link equation.

3. Each candidate is linked to at least one candidate of a different base
equation or to a target.

Candidates that do not comply to these conditions are dispensable, because
they have no impact on the elimination target. This constitutes a contradiction
to the minimality.

The disadvantages of this approach is first that minimality is not easy to
prove in large configurations and second that other kinds of redundancy
may be still there. Even if there are no redundant candidates there may be
redundant equations. This becomes very obvious if native equations are split
up into a base and a link. The next figure illustrates the effect of redundancy.

Diagram 1: Equation Redundancy

On the left we have all possible equations, 16 native base equations and 17

link equations. None of the candidates is dispensable, so we can only relax
some equations. On the right we have a reduced set of equations that also
justify 449 = 0 , but only uses 11 base equations and 17 link equations. Now
5 base equations turned into weaker link equations and 5 other link equations
are not used at all. All cell equations can be changed to base equations (≥ 1)

2.5 pattern 18

and the target is still eliminated. The remaining 11 base equations cover all
candidates and are pair-wise disjoint. The resulting minimal sub-puzzle has
solutions, where cells contain two true candidates. This is not an error.
Although both diagrams are logically correct, one would prefer the version
on the right with removed redundancy. The left diagram is over-defined
relative to the target and contains some unnecessary parts. Such effect
occurs only in large patterns and is probably due to the general over-defined
property mentioned in remark 2.7.
The next example shows a pattern with a property we don’t like to have for
another reason.

Diagram 2: Non-Ideal Elimination Pattern

The pattern of diagram2 consists of 3 base equations and 3 link equations.
The configuration has minimal candidates, but there is still something odd.
Besides the group of targets marked red there is also 692 = 0 for all solutions
of the sub-puzzle. A little investigation reveals that the candidate 692 is
eliminable by a sub-sub-puzzle already. The pattern is a concatenation of a
two-string-kite with 6R4, 6C6 followed by a box-line-interaction with 6R9.
It seems difficult to make an abstract elimination definition that avoids
patterns concatenation of some otherwise independent elimination patterns.
In fact any eliminable candidate of a Sudoku has eliminations patterns of
such kind. We only have to pile up enough equations.

2.5 pattern

In both examples the minimality of the reduced set of equations it is still
difficult to prove. So additional conditions for patterns would be needed
to exclude unwanted effects. This leads to even more difficulties to prove a
pattern definition. Because of this problem, that does not go away, we change
course.
At this point it’s good practice to backtrack and recheck all explicit or hidden
assumptions. The assumption that turns out to be the most questionable is
that a resolution path is a sequence of elimination patterns. This had been
the motivation for a general abstract elimination definition. Also the role of

2.5 pattern 19

eliminations is overvalued. Of course eliminations are necessary, but they
are only intermediate results of an resolution path. BERT introduces other
types of intermediate results and their usage.

2.5.1 Elimination Core

Key Point An important property common to all eliminations

Any elimination pattern, even non-minimal ones, can be sub-divided into
three sub-puzzles as shown in this schematic picture:

The base part consists of all candidates that are directly connected to the
target and the equation base ≥ 1 is true for all solutions. This is complemen-
tary to t = 0 for all solutions. So every elimination pattern is associated with
a base equation (not native). The logical network of remaining candidates
build the core. Now we can split the elimination sub-puzzle into two smaller
ones. The sub-puzzle “core + base” assures base ≥ 1 even after the target
has been eliminated. The sub-puzzle “base + target” alone is enough for
t = 0. Both are sub-sub-puzzles of the Sudoku itself, so the equations remain
valid for any global solution. This is even true if the targets are cleared or
candidates of core or base will have a fixed value.
This separation will be important for BERT. The base complies to definition 2.11

of calculated base equations. Usually “core + base” patterns that have no com-
mon target links are regarded as useless, but this is wasting the opportunity
to reuse such equations. Later chapters will show how such re-use is man-
aged.

2.5.2 Generic Pattern

Instead of an single abstract pattern definition the following pragmatic
definition is used as an intermediate construction. The listed types of pattern
pick up essential properties of the above, but are at the same time more
specialized. There is no attempt to control the redundancy of generic patterns.
This is done later on a global level. Generic patterns just “work” and are
worth to be looked at.
Definition 2.20. Pattern

Let S be a sub-puzzle of a resolution state defined by a set of base equations
and a set of link equations conforming to (1),(2) and (3) of section2.4.2.
S is an elimination pattern, if for the target variables {t1, . . . , tn} the expression
t1 + . . . ,+tn = 0 is valid for all solutions of S.
S is a base pattern, if for a sub-set of variables {b1, . . . , bn} of S the expression
b1 + . . . ,+bn ≥ 1 is valid for all solutions of S.
S is a link pattern, if for a sub-set of variables {l1, . . . , ln} of S the expression
l1 + . . . ,+ln ≤ 1 is valid for all solutions of S.

Some of the generic patterns will be refined to BERT patterns in the next
chapter. This will be achieved by some construction principles that allow
easy verification and thus avoiding the problems discussed above. It will turn
out that very few fundamental pattern types and their combinations will be
sufficient. The scope of eliminations with such patterns is still very large. In

2.5 pattern 20

a way BERT is inspired by a very special interpretation of the requirements
section2.2.1.

3
PAT T E R N C A L C U L AT I O N

This chapter comes with a number of examples demonstrating various types
of calculations for base equations and eliminations. The calculations will use
only arithmetic additions and subtraction together with reductions stemming
from the candidate value restrictions. These examples are generalized to
build a formal definition of BERT.

3.1 easy examples

3.1.1 Pairs, X-Wings

If four candidates a1, a2, b1, b2 satisfy the two native base equations a1 + a2 = 1
and b1 + b2 = 1 and also the two link equations a1 + b1 ≤ 1 and a2 + b2 ≤ 1,
the candidates in the link complements t1, t2 of both links have the value
zero.

We prove this by the following trivial calculation:

a1 + b1 + t1 + a2 + b2 + t2 = 2

a1 + a2 + b1 + b2 = 2

⇓ Subtraction

t1 + t2 = 0

The only remarkable part is the level of abstraction. There is no need to
mention cells, rows, columns or boxes explicitly, because the native base
equations are identical for all these types. This means that naked pair, hidden
pair and x-wing are defined by identical equations, only the variable names
are different. We can get this powerful abstraction for many re-formulated
traditional methods. This is similar to super-symmetry in the DB concept. All
patterns that comply with the pair equations build a class – the pair class.
This does not mean that a hidden pair is the same thing as an x-wing, but both
share properties that are sufficient to justify their eliminations with structural
identical equations.

3.1.2 WXYZ-Wings

You may find some explanation of this method in Sudopedia or elsewhere.

za . . . zb . . . w1x1y1z1
. . . w4z4 . . .
.

. . . x2y2z2 . . .

.

.

x3y3z3
.
.

This table shows the Sudopedia definition of “Type 1 WXYZ-Wing” in a
schematic manner. The candidates wi, xi, yi, zi are of any different number
and “...” denotes any other candidates. Rows 4 until 9 are omitted.

Re-formulating this method with equations we get:

w1 + x1 + y1 + z1 = 1
x2 + y2 + z2 = 1
x3 + y3 + z3 = 1

w4 + z4 = 1

 = 4

3.1 easy examples 22

w1 + w4 ≤ 1
x1 + x2 + x3 ≤ 1
y1 + y2 + y3 ≤ 1

 ≤ 3

⇓ Subtraction

z1 + z2 + z3 + z4 ≥ 1

We can interpret these equations the following way: The capacity of the
set of candidates {wi, xi, yi, zi} is 4 true candidates. The capacity of the
set {wi, xi, yi} in the second section is at most 3 true candidates, so the set
{zi}contains at least one true candidate and therefore is a calculated base
equation. We continue calculating:

za + zb + z1 + z2 + z3 ≤ 1
za + zb + z4 ≤ 1

}
≤ 2

z1 + z2 + z3 + z4 ≥ 1

⇓ Subtraction

2 ∗ (za + zb) ≤ 1

⇓ Restriction 0 ≤ za,b ≤ 1

za + zb = 0

This means that the candidates za = 0 and zb = 0 are eliminated.

Now we have a look at the schema of “Type 2 WXYZ-Wing”:

za . . . zb . . . w1x1y1z1
x2y2z2

. . . x3y3z3 . . .

.

.

.

w4z4
.
.

The corresponding equations are exactly the same ones as for type 1. This
shows the power of the level of abstraction with equations.

In both variations some of the variables may have zero value without breaking
the logic, as long as each equation has at least two variables and at least one
target variable is unknown. The kind (row,column,box) of some equations
is different, the calculation is not. So we say that conditions of the equation
kinds are decorative conditions. That does not mean that we can always find
sets of variables for arbitrary decorative conditions. This is due to the special
connectivity of the Sudoku, but does not degrade the value of the abstraction.

3.1 easy examples 23

3.1.3 Free Pattern

Other traditional methods can be transposed as well, but this is not a main
topic of this article. Base equation calculation does not require knowledge of
how the pattern was generated or their classification in a method system.

Diagram 3: Example Free Pattern

This pattern can be interpreted as ALS-logic (AB) or as some braid extension
(DB) pattern or as anything else you like. The calculation with base equations
is as follows:

2B9 = 277 + 297 + 278 = 1
3B9 = 377 + 397 + 378 = 1

8B9 = 897 + 8(89)9 = 1
8R5 = 859 + 852 = 1
7C8 = 778 + 718 = 1

R1C2 = 812 + 412 = 1

= 6

R7C7 ≥ 277 + 377 ≤ 1
R9C7 ≥ 297 + 397 + 897 ≤ 1
R7C8 ≥ 278 + 378 + 778 ≤ 1

8C9 = 859 + 8(89)9 = 1
8C2 = 852 + 812 = 1

 ≤ 5

⇓ Subtraction

718 + 412 ≥ 1

final elimination calculation:
4R1 ≥ 412 + 418 ≤ 1

R1C8 ≥ 718 + 418 ≤ 1

}
≤ 2

718 + 412 ≥ 1

⇓ Subtraction

2 ∗ 418 ≤ 1

⇓ Restriction 0 ≤ 418 ≤ 1

418 = 0

3.2 base elimination 24

With growing size of the patterns drawings with bases and links directly in
the Sudoku grid become more and more confusing. An equation diagram
gives a more visual but still abstract view on the pattern. Rows are base
equations and columns link equations except that in the rightmost column
resides the resulting base equation.

R7C7 R7C8 R9C7 8C9 8C2 BE ≥ 1
2B9 277 278 297
3B9 377 378 397
8B9 897 8(89)9
8R5 859 852

R1C2 812 412
7C8 778 718

Now we can see clearly that the pattern contain a group link and an ALS.
It is also some kind of “queue”. But all these properties are not used when
performing the above arithmetic calculations. There is no intrinsic ordering of
base equations in rows or link equations in columns. Any sequence of addition
or subtraction will yield the same result. Proper ordering can reflect the
connectivity of the pattern, but is non-functional for equation calculations.
Connections are also related to the grid geometry only if the equations are
native.

3.2 base elimination

The separation of core and base equation explained in section2.5.1 leads to a
generalization:

Calculation3.1. Base Elimination

A base elimination consists of

1. one base equations be

2. one or more targets ti

3. each candidate of the base equation is linked to the target(s)

Any elimination calculation can be normalized to a pattern with at most
four links of different kinds, lecell , lerow, lecol , lebox, corresponding to the four
different directions in the Sudoku space. Two links are common, one or
three occur sometimes and four are vary rare. The normalization is done by
building appropriate candidate groups corresponding to the four directions.

3.3 base array calculation

It is obvious that the core calculation of patterns like diagram3 can be
generalized also.

Calculation3.2. Base Array Calculation

If

1. n pair-wise disjoint base equations bei ≥ 1

2. n− 1 pair-wise disjoint link equations lek ≤ 1

then the base array calculation of size n

n−1⋃
k=1

lek $
n⋃

i=1

bei ⇒
n

∑
i=1

bei −
n−1

∑
k=1

lek ≥ 1

provides a calculated case equation.

3.3 base array calculation 25

The difference of both equation sets is ≥ 1, that means it is a calculated base
equation. Note that the calculation does not require native base equations.
This little observation seems inconsiderable at first sight, but brings a new
idea and finally leads to a radical changed view on Sudoku solutions. Base
equations can be calculated from other ones. We will see later that there are
even more calculation types to achieve this. So base equations play a central
role in BERT.

Many of the traditional methods are of the type “base array + base elimina-
tion”, Two-String-Kite, Wings, Death Blossom, Queues of some kinds, etc. The
base array calculation is not regarded as method itself, but defines a fairly
large class of patterns with a common property.

3.3.1 Splitting

Some n-base calculations allow a split-up into smaller parts. This will be also
useful in some situations. The pattern diagram3 divided into a sequence of
two calculations, shown as equations diagrams:

R7C7 R7C8 R9C7 BE1 ≥ 1
2B9 277 278 297
3B9 377 378 397
8B9 897 8(89)9
7C8 778 718

+
8C9 8C2 BE ≥ 1

BE1 8(89)9 718
8R5 859 852

R1C2 812 412

This split creates an intermediate base equation 8(89)9 + 718 ≥ 1. There are
other possible splits, but the ALS part R7C78 can not be separated.

3.3.2 Combining

The inverse operation is combining.

If two disjoint base equations a1 + a2 + . . .+ an ≥ 1 and b1 + b2 + . . .+ bm ≥ 1
are linked by a1 + b1 ≤ 1 , we get by subtraction another base equation
a2 + . . . + an + b2 + . . . + bm ≥ 1. This is a direct application of the base array
definition.

3.4 base reduction 26

3.4 base reduction

The base array calculation of the previous chapter requires pair-wise disjoint
base equations. But the calculation can allow overlapping base equations as
long as the overlaps occur in the result only. The next pattern is an example.

Diagram 4: Overlapping Base

The array calculation is as follows:

7B5 = 7(46)5 + 75(46) = 1
7R2 = 721 + 722 + 725 = 1
7C2 = 712 + 722 + 752 = 1

 = 3

7C5 ≥ 7(46)5 + 725 ≤ 1
7R5 ≥ 75(46) + 752 ≤ 1

}
≤ 2

⇓ Subtraction

2 ∗ 722 + 712 + 721 ≥ 1

⇓ Reduction

722 + 712 + 721 ≥ 1

The subtraction result can be reduced to a base equation because all candidate
variables are either zero or one.
The general rule for such reductions is:

Calculation3.3. Base Reduction

Any equation with n integer variables 0 ≤ di ≤ 1 and integer multipliers
ai > 1 is reducible to a base equation.

n

∑
i=1

ai ∗ di ≥ 1⇒
n

∑
i=1

di ≥ 1

So the base array calculation has an extended form that is addressed under
the same name to keep things simple. The base reduction will be used in
other calculations too. Most solvers avoid patterns with overlapping base
equations to escape complications.

3.5 matrix elimination 27

3.5 matrix elimination

Traditional solving knows many patterns that fall under the term Matrix
Elimination (Pairs, Triples, SueDeCoq, NiceLoop, etc). Some call it “base-cover”,
the AB terminology calls it “rank-zero”. The following non-standard example
demonstrates the general matrix principle.

Diagram 5: Matrix Example

The corresponding equation diagram with an extra row with elimination
candidates:

2C2 2B8 2C8 R1C9 1R2 R3C1
2R7 272 27(45) 278
2R9 292 294 298
2R1 218 219
1C9 119 129
1B1 12(13) 131
2R3 232 231

252 285 2(56)8 919 125 (58)31

Contrary to previous equation diagrams the rightmost column is not labeled
with “≥ 1”. In fact any of the six columns can play that role (e.g.R1C9):

2R7 + 2R9 + 2R1 + 1C9 + 1B1 + 2R3 = 6

2C2 + 2B8 + 2C8 + 1R2 + R3C1 ≤ 5

⇓ Subtraction

219 + 119 ≥ 1

The following elimination calculation will yield 919 = 0 . So we have six
entangled base array calculations.

Performing all six calculations one after another would violate the least-
redundancy-principle, because many parts will repeat itself. There is a much
simpler combined calculation that does the same thing in one shot.

3.6 single elimination 28

2C2 + 2B8 + 2C8 + 1R2 + R3C1 = 6

2R7 + 2R9 + 2R1 + 1C9 + 1B1 + 2R3 = 6

⇓ Subtraction

252 + 285 + 2(56)8 + 919 + 125 + (58)31 = 0

The column equations are now used as native(!) base equations too, so they
add up to six exactly.

Matrix eliminations relate to the Dirichlet’s1 box principle2 or pigeonhole prin-
ciple. It says that applied to this situation: If we have six objects (the true
candidates of the six native base equations) and six boxes (the six link
equations) then each box must contain one of the objects.

The generalization of matrix calculations:

Calculation3.4. Matrix Elimination

A Matrix Elimination of size n takes

1. n pair-wise disjoint base equations bei ≥ 1

2. n pair-wise disjoint link equations lek ≤ 1

then

n⋃
i=1

bei $
n⋃

k=1

lek ⇒
n

∑
k=1

lek −
n

∑
i=1

bei = 0

It should be noted that the condition (1) – corresponding to matrix rows –
does not require native base equations. The difference equation – corresponding
to the targets – is always zero, because all variables must have positive
values. Link equations are always = 1 in traditional matrix eliminations and
eliminate the link complements. The above calculation does not require this
and therefore is more general.

3.6 single elimination

Although single eliminations are the simplest possible elimination patterns
and regarded as meaningless, they bring a little surprise when written with
equations.

Calculation3.5. Single Elimination

If there is

1. one variable s = 1

2. one link equations le ≤ 1

then the single elimination

{s} $ le⇒ le− s = 0

provides a zero equation.

Usually only the situation where the variable is a single true candidate,
is regarded as single elimination. And no solver will hesitate to eliminate
all candidates linked to the true candidate. But the above equation does
not define a combined elimination of cell, row, column or box links. Each
direction will be treated as separate step and this has some implications

1 Lejeune Dirichlet 1805-1859 Mathematician
2 (see http://mathworld.wolfram.com/DirichletsBoxPrinciple.html)

http://mathworld.wolfram.com/DirichletsBoxPrinciple.html

3.7 odd ring calculations 29

for BERT. The clear reason is that all elimination patterns must be minimal.
There should be no exceptions.

The single elimination equation also applies to situations, where the variable s
is a group variable. These are named Box-Line-Interactions, Pointing or Claiming
Locked Candidates traditionally. Here the term group single is preferred.

Diagram 6: Group Single

We find s = MAX(517, 518) = 1 and le = 5B3 = 1 and get as result

le− s = 52(89) + 53(79) = 0

From a theoretical point of view single eliminations can be interpreted also
as matrix eliminations of size one.

3.7 odd ring calculations

This chapter picks up ideas from DB and relates to nrczt-chains, whips and
braids, but goes beyond these pattern constructions. Many of them are
covered by base array calculations already, but especially braids may contain
odd rings. The next example demonstrates this, comes with a new idea and
requires a modified calculation.

Diagram 7: Odd Ring

Without the candidate 236 the pattern could be interpreted as “chain with
ALS”, but the link 236 + 224 ≤ 1 creates an odd ring. In the DB terminology
this pattern is interpreted as braid[4]. The assumption of the target to be true
leads to a contradiction when performing a series of single eliminations.

The base array calculation does not work here, because there are 4 base
equations (R2C4, R4C1, 2C6, 2C8) and 4 link equations (2R2, 2B2, 2R4, 2R5)
so their arithmetic difference is useless. The links 7R2, 7C1 belong to an
elimination calculation with a base equation 724 + 741 ≥ 1.

The correct way of calculating this result requires to double the base equation
where two links overlap.

3.7 odd ring calculations 30

2 ∗ R2C4 = 2 ∗ 224 + 2 ∗ 724 = 2
R4C1 = 241 + 741 = 1

2C6 = 236 + 246 + 256 = 1
2C8 = 228 + 248 + 258 = 1

 = 5

2R1 = 224 + 228 = 1
2R4 ≥ 241 + 246 + 248 ≤ 1

2R5 ≥ 256 + 286 ≤ 1
2B2 ≥ 224 + 236 ≤ 1

 ≤ 4

⇓ Subtraction

2 ∗ 724 + 741 ≥ 1

⇓ Restriction 0 ≤ 724, 741 ≤ 1

724 + 741 ≥ 1

The odd ring calculation is now very similar to the base array calculation and
subtracts n− 1 link equations from n base equations. Using the base reduction
(see definition 3.3) is always required.

This schematic picture of an odd 7-ring shows more clearly the ring structure.
The orange lines denote base equations and the black ones link equations.
There is a distinguished base equation at the top that has a variable with two
links connected to two other base equations. Then we have alternating link
and base equations closing the ring. The top equation will be doubled in the
calculation. The optional Xz represent one or more additional variables of
each base equation.

With base equations A, B, C, D (pair wise disjoint) we count 2 ∗ A + B + C + D ≥ 5
and diminished by 4 link equations gets A1 + D3 + Xz ≥ 1. Whether or not
this does any direct elimination is not important. It creates a new base
equation that may be used later on. The impression that the above ring is
an ordered structure is not wrong, but only one possible interpretation. The
base equation calculation does not use this ordering. The interesting part of
the ring structure is the “head” where two links join. The remaining part can
be collapsed into a single base equation by performing a base array calculation.

Odd rings of any size are transformable into a triangle and produce the same
base equation as result. That way we can keep lots of ring variants out of the
general definition.

3.8 odd loop calculation 31

Calculation3.6. Odd Ring Calculation

If there is

1. one variable (candidate or group) s

2. one base equations bs ≥ 1 that contains s

3. one base equation br ≥ 1 disjoint with bs containing at least 3 variables

4. two link equations le1, le2 ≤ 1 linking s
and two different variables r1, r2 of br

then the odd ring calculation

2 ∗ bs + br− le1 − le2 = 2(bs− s) + (br− r1 − r2) ≥ 1

provides a calculated base equation.

The result is always a base equation after applying a base reduction at the end.
Odd rings are another important calculation type to produce base equations.

All braid patterns of the DB concept construct odd rings because of the
condition that extra links are allowed to “right linking candidates” only. So
braids can be evaluated by computing a number of base equations. This is no
formal proof but the main idea is to start with the innermost ring, compute
a base equation and iterate until no more rings exist.

3.8 odd loop calculation

The example for odd loop calculation is taken from an AB web-page3. The
explanation given there under the name “dark logic” is a bit obscure, but
nevertheless the pattern constitutes a valid elimination. Odd loops are very
different from odd rings and seem to contain no links.

Diagram 8: Odd Loop

First we focus the attention on the central “dark” part of the sub-puzzle. The
key idea for the calculation of odd loops is to create link equations inside(!) of

3 http://sudokuone.com/sweb/gen2/blacklog.htm

http://sudokuone.com/sweb/gen2/blacklog.htm

3.9 generic array calculations 32

all base equations where these overlap. This way we get the same number of
links and bases.

6C2 + 6C6 + 6R6 + 6R9 + 6B4 = 5

6(46)1 + 652 + 6(579)2 + 66(16) + 69(246) + 6(169)6 = 5

2 ∗ (652 + 661 + 692 + 696 + 666) + 616 + 641 + 672 + 694 = 5

652 + 661 ≤ 1

661 + 666 ≤ 1

666 + 696 ≤ 1

696 + 692 ≤ 1

692 + 652 ≤ 1

⇓
2 ∗ (652 + 661 + 692 + 696 + 666) ≤ 5

⇓ Odd-Even Reduction

2 ∗ (652 + 661 + 692 + 696 + 666) ≤ 4

⇓ Subtraction from the bases

616 + 641 + 672 + 694 ≥ 1

A variable expression with even value that is ≤ 5 is also ≤ 4.

Calculation3.7. Odd-Even Reduction

For any equation with 2k + 1 variables 0 ≤ di ≤ 1 with

2 ∗
2k+1

∑
i=1

di ≤ 2k + 1⇒
2k+1

∑
i=1

di ≤ k

The result of the final subtraction is a base equation. This additionally sheds
light on the term guardian that is sometimes used traditionally. There are
other ways of explaining why at least one of the guardians must be true, but
the point here is the integration of odd loops into base equation logic.

The remaining parts of the logic is a base array calculation (continuation see
section5.2.5).

Odd loops are fairly rare. This may have reasons like:

• Existing solvers do not search for odd loops.

• Odd loops are really rare.

In any case these patterns do only appear in sufficient hard problems.

3.9 generic array calculations

The generic calculation enclose base array and ring calculations as special
cases.

3.9 generic array calculations 33

Calculation3.8. Generic Array Calculation

If there are

1. n base equations bei ≥ 1 multiple times bi

2. m link equation lej ≤ 1 multiple times lj of the same variables

then the generic calculation

m

∑
j=1

lj =
n

∑
i=1

bi − 1⇒
n

∑
i=1

bi ∗ bei −
m

∑
j=1

lj ∗ lej ≥ 1

provides a calculated base equation.

The result usually needs a following base reduction to complete. Only on rare
occasions patterns really require a generic calculation. An example that was
generated by Sudoku Explainer comes here:

Diagram 9: Generic Calculation

The special situation results from two overlapping base equations and two
overlapping link equations at the same cell R7C4. So the equation 1C4 is
used three times, because 574 needs two links to cover both variables.

3 ∗ 1C4 = 3 ∗ 174 + 3 ∗ 184 = 3
1C3 = 113 + 173 = 1
6C3 = 613 + 643 = 1

5R6 = 565 + 566 + 567 = 1
5R7 = 574 + 577 = 1

5B8 = 574 + 584 + 585 = 1
2C6 = 256 + 266 + 276 = 1
6C6 = 646 + 656 + 666 = 1

= 10

3.9 generic array calculations 34

2 ∗ R7C4 ≥ 2 ∗ 174 + 2 ∗ 574 ≤ 2
5C5 ≥ 565 + 585 ≤ 1
5C7 = 567 + 577 = 1

R1C3 ≥ 113 + 613 ≤ 1
R5C6 ≥ 256 + 656 ≤ 1

R6C6 ≥ 266 + 566 + 666 ≤ 1
6R4 ≥ 643 + 646 ≤ 1
1R7 = 173 + 174 = 1

≤ 9

⇓ Subtraction

3 ∗ 184 + 584 + 276 ≥ 1

⇓ Restriction

184 + 584 + 276 ≥ 1

continuing this intermediate base equation result by

BE = 184 + 584 + 276 ≥ 1
6C4 = 684 + 694 = 1

}
≥ 2

R8C4 ≥ 184 + 584 + 684 ≤ 1
}
≤ 1

⇓ Subtraction

276 + 694 ≥ 1

The same calculation in BERT notation defined in the next chapter:

BE = (3 ∗ 1C4, 5R67, 5B8, 16C3, 26C6 |
2 ∗ R7C4, 5C57, R1C3, R56C6, 6R4, 1R7) = (184, 584, 276)

[(BE, 6C4 | R8C4)→ 2B8, R9C4] = [294]

This completes the description of calculation types needed to define BERT.
It is important to point out that none of the calculation types introduced in
this chapter requires strict base equations bx = 1.

4
B A S E E Q U AT I O N R E S O L U T I O N T H E O RY

After all this preparations we arrive at the central part. The previous chap-
ter was working with (in)equations of candidate or group variables and
arithmetic addition and subtraction operators. There were also reduction op-
erators that were applied to equations. This is level 1 logic and has the power
to explain the various types of eliminations of the previous chapters. Now
we build level 2 logic on top to describe the resolution path in a condensed
manner. This needs a proper notation syntax. I checked existing notations,
but none of these fit the purpose required here.

Level 2 logic defines a set of operators that take equations as parameters and
have equations as result. The resolution path of BERT will be defined as a
number of of level 2 expressions. We use EBNF1 to formalize the syntax and
the semantic is explained when needed.

4.1 notation

The formal description of the notation is a prerequisite to perform computer-
supported procedures for scoring (chapter 5) and optimization (chapter 10).

On both levels round brackets are used to designate equations with a value
≥ 1. Square brackets designate equations with value = 0. There is no need
to designate equations with values ≤ 1, because they occur implicitly only.

4.1.1 Syntax Backus-Naur

First some necessary basics.

symbol = �1� | �2� | �3� | �4� | �5� | �6� | �7� | �8� | �9� ;

ident = alphabetic_character ,

{ alphabetic_character | symbol | �0� } ;

symlist = symbol , { symbol } ;

Level 1 variables:

candidate = 3 * symbol ;

candidates = symbol , symbol , �(� , symlist , �)�

| symbol , �(� , symlist , �)� , symbol

| �(� , symlist , �)� , symbol , symbol ;

group_elem = candidate | candidates ;

group = candidates

| �(� , group_elem , { �+� , group_elem } , �)� ;

Level 1 constructions:

equ_elem = group_elem | group ;

base_equation = �(� , equ_elem , { �+� , equ_elem } , �)�;

zero_equation = �[� , equ_elem , { �+� , equ_elem } , �]�;

1 http://en.wikipedia.org/wiki/Extended_Backus-Naur_Form

http://en.wikipedia.org/wiki/Extended_Backus-Naur_Form

4.1 notation 36

Level 2 variables:

cells = �R� , symlist , �C� , symbol

| �R� , symbol , �C� , symlist ;

columns = symlist , �C� , symbol

| symbol , �C� , symlist ;

rows = symlist , �R� , symbol

| symbol , �R� , symlist ;

boxes = symlist , �B� , symbol

| symbol , �B� , symlist ;

primes = cells | columns | rows | boxes ;

item = primes | ident | expression ;

itemlist = item , { �,�, item } ;

baselist = itemlist;

exolink = symlist , �B�, symbol , (�R� | �C�), symbol ;

linklist = primes , { �,�, primes } ;

Level 2 constructions:

array = �(� , baselist , �|� , linklist , �)� ;

loop = �(� , baselist , �|� , �(*)� , �)� ;

expression = array | loop ;

matrix = �[� , baselist , �|� , linklist , �]� ;

exocet = �[� , baselist , �|� , cells , exolink , �]� ;

elimination = �[� , item , �->� , linklist , �]� ;

assignment = ident , �=� ,

(expression | matrix | exocet) ;

4.1.2 Semantics

The equations of level 1 are variables of level 2 logic. There are three types.
Beside the two well-known types base and link we have a third type zero.
A zero equation corresponds to a level 1 equation, where the sum of it’s
variables is zero.
The members of a baselist are always of type base and are syntactically
separated by a comma. Expressions are usually of type base and can only
used as link, if the value is = 1. The type of assignment is inherited from
the right side always. The items of a baselist are always of type base and
the items of a linklist of type link even if the value is = 1.

• Type zero: (square brackets) matrix, elimination

• Type base or link: (round brackets) expression

The cardinality on an itemlist is the number of expanded prime elements
plus the number of ident and expression elements. The cardinality of the
linklist of a valid array2 expression must be one less than the cardinality
of the baselist. This condition is mandatory on each sub-expression of a
nested expression. A valid matrix or exocet requires equal cardinality for
base and link and a valid loop needs an odd sized list.

4.1.3 Remarks

It is important that the notation on level 2 is never using candidates or groups
in expressions. This makes expressions somehow independent of particular
resolution states. (section9.4)
In most case there is no choice for the elements of an array linklist or of a
matrix linklist. But despite of that I decided to list the links even in cases

2 The term array denotes the generic form and covers standard array and odd

rings as well.

4.2 algorithms 37

where base equations determine the links completely. Expressions would
become complete unreadable for humans otherwise. For pairs, triples and
simple chains e.g. there is no choice for the links. Each link must match at
least two bases.

4.2 algorithms

Now we describe how this syntax is connected to level 1 logic.

The procedure expression needs extensive explanations. The definition is
recursive as expressions may depend on other expressions and is related to
generic calculations of the previous chapter (section3.9). We ignore the special
cases at the moment.

The algorithm skeleton for expression calculation in some kind of pseudo
code:

FUNCTION expression (baselist,linklist)

candidates = EMPTY LIST

// base accumulation

EXPAND baselist TO bases

FOREACH item IN bases

IF item IS native

FOREACH var IN item // candidate or group

ADD var TO candidates

ELSEIF item IS expression OR ident // recursion

FOREACH var IN expression(item)

ADD var TO candidates

// link subtraction

EXPAND linklist TO links

FOREACH link IN links

FOREACH var IN link // candidate or group

IF cd EXISTS IN candidates

REMOVE cd FROM candidates

// base reduction

REMOVE DUPLICATES FROM candidates

RETURN candidates

Informally speaking it says that we first accumulate the candidates of all
denoted base equations and sub-expression is a list. Candidates may occur
multiple times if bases occur multiple times or overlap. Then we reduce
the list with candidates denoted by link equations, if and only if they are
in the list. Only at the end we remove the remaining duplicate candidates.
That assures that we get a base equation (≥ 1) finally. Sub-expressions are
expanded on demand.

A matrix is never re-used in other expressions but may rely on sub-expressions
(section3.5). The cardinality of baselist and linklist must be equal. All
candidates or groups that occur in base equations must also occur in link
equations. This assures that we get a zero equation [= 0] finally. The proce-
dure is also valid for both kinds of single eliminations (section3.6), where
baselist and linklist contain one item each.

The algorithm for matrix calculation:

FUNCTION MATRIX (baselist,linklist)

targets = EMPTY LIST

// link accumulation

EXPAND linklist TO links

FOREACH link IN links

FOREACH var IN link // candidate or group

ADD var TO targets

4.3 resolution path 38

// base subtraction

EXPAND baselist TO bases

FOREACH item IN bases

IF item IS native

FOREACH var IN item // candidate or group

REMOVE var FROM targets

ELSEIF item IS expression OR ident // recursion

FOREACH var IN expression(item)

REMOVE var FROM targets

RETURN targets.

An elimination is only valid if candidates or groups that occur in link
equations are either occuring in the base expression or are part of the common
intersection of all link equations (??).

FUNCTION ELIMINATION (baseexpr, targetlinks)

targets = EMPTY LIST;

FOREACH link IN targetlinks

FOREACH var IN link // candidate or group

ADD var TO targets

// expr subtraction

FOREACH var IN baseexpr // candidate or group

REMOVE var FROM targets

REDUCE

RETURN targets

These are the algorithms for the main calculation types.

4.3 resolution path

Key Point The BERT concept relies on principles rather than explicit solving
methods.

4.3.1 Resolution State

A resolution path is a number of resolution states and begins with a start state.
A resolution state consists of a set of equations. Scarcely surprising the
start state is the set of all 324 native base equations together with 17 or more
equations of the given candidates and the value restrictions of the candidates
of course. Any subsequent resolution state is also a bundle of equations and
is possibly extended with more equations. All calculated base equations
become persistent part of the succeeding resolution states.

Although it’s the human nature to think sequentially and to write sequen-
tially, resolution states are generally not strictly sequentially ordered. They
depend on each other, so the proper connection structure is a directed graph
reflecting these dependencies.

A resolution state 1 is defined as state after all direct eliminations of the given
candidates are executed. This is not mandatory but a convenient practice.

4.3.2 Resolution Step

The transition from one resolution state to another must obey the principle
that the number of solutions is preserved. With BERT the transitions use cal-
culations that produce base equations and zero equations. These calculations
are discussed in above. This is not an absolute limitation, but other types of
calculations seem to be unnecessary at the time being. A BERT resolution
step is a bundle of calculations that determine a zero equation or a base

4.3 resolution path 39

equation. Zero equations reduce all equations of the current resolution state
by stripping off all zero candidates. The final resolution state of a Sudoku
with an unique solution is reached, when all candidates have a definite value.
The only remaining equations are d = 0 or d = 1 (d any candidate). In case
of multiple solutions of the puzzle the remaining equations describe the the
sub-puzzle of candidates with no definite values. The BERT concept makes
no assumption about solvability or uniqueness of the Sudoku problem. But
unique puzzles are clearly the interesting ones.

An explicit arithmetic calculation must exist for any resolution step in BERT.
It is not enough that a calculation exists “in principle” or “theoretically”.
All equations that are assigned to an identifier are part of all subsequent
resolution states and can be used with calculations later.

A resolution step is one of the following:

1. a single elimination with a candidate or group

2. a base elimination with a known base equation

3. a matrix elimination with known base equations

4. a calculation of an implicit base equation

5. a calculation of a named base equation for later use

4.3.3 Limits

The requirement to explicitly list BERT expressions excludes all solution
attempts directly based on assumptions. This is the main argument for not
using assumption methods like back-doors3, etc. A translation to an equivalent
BERT expression is impossible.

A number of methods (Nishio4, Bifurcation5, etc) are testing a candidate by
assuming d = 1 and exploring the consequences. If a contradiction appears
after some steps, the candidate can be eliminated (tertium non datur). This is
also known as Trial&Error. These methods create patterns that are usually
not minimal (section2.4.2) and contain redundant parts. Another group
of methods is called coloring6. Here the test does not start at a target but
elsewhere and candidates of the pattern are not assigned to definite values
but colors.

4.3.4 Uniqueness

Uniqueness is a central property of a Sudoku puzzle.

All resolution methods that rely on eliminations can only solve Sudoku
that have a unique solution. At the same time these methods verify the
uniqueness with a correct resolution path. Only one choice for all cells
remains. These methods can also verify the non-existence of a solution, if
eliminations lead to a contradiction. But if elimination based methods do
not solve a puzzle completely, it’s impossible to decide whether the puzzle
has multiple solutions or the method set is insufficient.

This calls for an uniqueness check prior to the application of eliminations.
This looks perplexing because the check provides the solution already. But
the solution is only one among many other properties of the puzzle and from
my point of view not very important. The essential properties are related to
resolution paths and this is why we should analyze Sudoku puzzles.

3 see http://sudopedia.enjoysudoku.com/Backdoor.html
4 see http://sudopedia.enjoysudoku.com/Nishio.html
5 see http://sudopedia.enjoysudoku.com/Bifurcation.html
6 see http://sudopedia.enjoysudoku.com/Coloring.html

http://sudopedia.enjoysudoku.com/Backdoor.html
http://sudopedia.enjoysudoku.com/Nishio.html
http://sudopedia.enjoysudoku.com/Bifurcation.html
http://sudopedia.enjoysudoku.com/Coloring.html

4.3 resolution path 40

There is a group of methods that use uniqueness of the solution as an assump-
tion. It sparked controversial discussions in the Sudoku community whether
this is a good idea nor not. Such discussions are pointless and unproductive
without clarifying the purpose of these methods in relation to a resolution
theory. There are arguments that Sudoku without a unique solution are not
valid Sudoku problems and shift the responsibility to the problem creator.
But this is only an exchange of wording and does not alter the fact that
verification of uniqueness can only be done through solving.

Uniqueness methods are not useful with BERT. This is not an a-priory
decision. At first these methods may give a wrong result for non-unique
puzzles, because the assumption of uniqueness cannot prove itself. Second
an uniqueness pattern does not build a sub-puzzle where the target(s) are
zero in all sub-puzzle solutions. So it is impossible to write the pattern as an
arithmetic expression resulting in a zero equation. The uniqueness property
is not an equation.

5
S C O R I N G

The purpose of scoring is to define a metric on calculations, groups of
calculations and eliminations and finally on the whole resolution path. The
term scoring is chosen to emphasize the difference to rating. The rating value
is determined by the most complex elimination step only. There are some
variants, the most common is serate

1 by GSF. The rating value is intended
to reflect the “difficulty of the Sudoku problem” by rating the resistance to
the resolution power of the Sudoku Explainer solver.
The scoring presented in this chapter is one of other possible ways defining
a resolution metric on top of base equation calculations. Only properties of
the elimination patterns itself are used, never properties of the methods that
created the patterns. To keep such metric consistent, a number of principles
should establish the scoring rules. The principles chosen here seem rather
natural, but nevertheless raises some subtle issues.
The BERT scoring does not evaluate “difficulty” which is always relative
to a solver concept, but calculates a linear arithmetic complexity regardless
how difficult it is to find the eliminations. This might look strange but the
separation of resolution steps from the solver opens new possibilities.
Does scoring rival with rating? The answer is yes and no, but more no than
yes. The absolute score minimum of all possible resolution paths is existing
and has a definite value, but is practically impossible to calculate. Even the
distance to the absolute score minimum is unknown. So the main scoring
purpose is comparing paths of the same puzzle.
The scoring counts arithmetic additions and subtractions and these are
the units of measurement. The attribute linear means that any addition or
subtraction always has the same score value anywhere in the calculations.
Because of this we cannot expect a close correlation with SER rating values.

5.1 scoring rules

The score value is defined by very few rules and is calculated with an
algorithms taking the expressions of an resolution path as input.
The scoring rules are guided this principles:

1. Count all arithmetic operations with variables equally.

2. Do not count operations on explicit values. (zero, one)

3. Do not count reductions that origin from value restrictions.

4. Re-use of equations are free of cost.

5. Sub-expressions do not alter the score

5.1.1 Addition Rule

If two base equations a1 + . . . + an ≥ 1 and b1 + . . . + bn ≥ 1 are added
to a1 + . . . + an+b1 + . . . + bn ≥ 2 we count one score point. Only the red
addition operation is relevant, the other addition operations on the left side
are done beforehand and are not counted again. Additions of absolute values
on the right side are never counted. Consequently the score of n added base
equations amounts to n− 1. Candidates may occur multiple times. The same
scheme applies to link equations.

1 download http://gsf.cococlyde.org/download

http://gsf.cococlyde.org/download

5.2 scoring examples 42

5.1.2 Subtraction Rule

If a link equation b1 + . . .+ bk ≤ 1 is subtracted from n added base equations
d1 + . . . + dn ≥ n we count one point for each subtracted variable. The right
side subtractions are not counted.

There are very good reasons to treat additions and subtractions differently.
If we would treat additions by adding candidates one by one also, we just
count the number of candidates. This would ignore any pattern structure.
Although the subtraction rule score is equal to the number of candidates in
most cases, it’s not true generally. If we alternatively score one point for each
subtracted equation, we end up with counting equations. The leading idea is
counting operations and not components of a pattern.

5.1.3 Link Rule

The derivation of a link equation from a strict base equation is always free of
cost. This is interpreted as some kind of re-use.

5.1.4 Zero Rule

Any addition or subtraction of zero terms does not increase the score. There
are some situations where the zero term rule applies. One is the follow-
up of the subtraction rule, another reduces all affected equations after an
elimination of a candidate. So the deleting zero terms from any number of
equations is done free of cost. The zero rule is also applied when combining
or splitting zero equations.

A zero equation implies all member to be zero. No cost is counted for such
split.

z1 + . . . + zn = 0⇐⇒ z1 = 0∧ . . .∧ zn = 0

5.1.5 Group Rule

The group creation form k candidates a1, . . . , ak to a variable MAX(a1, . . . , ak)
scores k− 1 points. A subtraction of a group variable is one point. Many
patterns can be calculated with or without building groups. The resulting
score is intentionally the same if the group is subtracted only once. The
group rule must be applied before any other rule in a calculation.

5.1.6 Reduction Rules

All reductions that originate from the basic value restriction of candidates
0 ≤ d ≤ 1 are free of cost. (3.3) (3.7)

5.2 scoring examples

This section will illustrate the use of the notation and scoring. The score
value of traditional patterns may vary by a small margin depending on the
actual situation.

5.2.1 Score of Array

The notation of the pattern diagram3 is

[(238B9, 8R5, 7C8, R1C2 | R79C7, R7C8, 8C29) : R1C8, 4R1] = [418]

5.2 scoring examples 43

For better explanation the expression is broken up into two sub-expressions
with an assignment.

BE = (238B9, 8R5, 7C8, R1C2 | R79C7, R7C8, 8C29) = (718 + 412)

[BE→ R1C8, 4R1] = [418]

The result of the first line is in round brackets indicating that the result is a
base equation (≥ 1) and the result of the second line in square brackets is
zero.
The core pattern BE contains six native base equations and their addition
makes 5 points according to the addition rule. Then 13 core candidates are
subtracted 8(15)2, 8(589)9, (23)77, (237)78, (238)97. The candidates are not
visible in the above equation but are determined during the calculation. So
the combined score calculation for BE is 18 points according to the subtraction
rule. The elimination on the second line adds two link equations scoring one
point (addition rule) plus two points by subtracting the candidates of BE. So
the total score for the pattern is 21 points.
Now we have a look at the notation of the same pattern split up as shown in
section3.3.1.

BE1 = (238B9, 7C8 | R79C7, R7C8) = (8(89)9 + 718)

BE2 = (BE1, 8R5, R1C2 | 8C29) = (718 + 412)

The expression BE1 needs 3 additions and 8 subtractions, BE2 needs 2
additions and 5 subtractions. Together we have 18 points which is the same
amount as the above calculation without split. It is also correct to write the
expression as

((238B9, 7C8 | R79C7, R7C8), 8R5, R1C2 | 8C29) = (718 + 412)

because the result of the inner expression is a base equation of the outer
expression.
The calculation rule for array calculations with non-overlapping bases is
always (b − 1) + c where b is the number of bases and c the number of
candidates of the core pattern. Building of groups does not change the score
value.

5.2.2 Score of Matrix

Matrix score calculation is relatively easy. The pattern of diagram5 shows a
6 ∗ 6 matrix and the BERT notation is

[2R1379, 1C9, 1B1 | 2C28, 2B8, 1R2, R1C9, R3C1]

= [252 + 285 + 2(56)8 + 919 + 125 + (58)31]

and scores 5 (additions of extended links)+ 16 (subtractions of base variables) =
21 points.

5.2.3 Score of Single

Traditionally singles are regarded as totally meaningless, not even worth to
be mentioned in a resolution path. The score of a simple single elimination
is zero points because the compensation of the value one on both sides of
the equation is not counted according to principle (2). It is expressly pointed
out that there is no need to execute the elimination directions all at the same
time. The timing of eliminations is a completely separate issue.
The score of a group single (box-line interaction) is equal to the score to build
the group. After that the pattern is treated like any other single.

5.2 scoring examples 44

5.2.4 Score of Odd Ring

The diagram7 shows an odd ring.

We write the notation for the core pattern as

BE = (2 ∗ R2C4, R4C1, 2C68 | 2R145, 2B2) = (724 + 741)

[BE→ 7R2, 7C1] = [712]

With one doubled base equation we count 4 additions and 9 subtractions.
Note that the candidate 224 is subtracted twice! The following reduction is
free of cost. With the final elimination of three point the total score is 16

points.

5.2.5 Score of Odd Loop

The diagram8 shows an odd loop. The notation for such patterns have a
special syntax:

LP = (6C26, 6R69, 6B4 | (∗)) = (616 + 641 + 672 + 694)

The word (∗) represents a special link list that is used only with odd loops.
It indicates that the link items are the same as the base items and cover the
overlapping parts of the base equations. All link candidates of the loop are
subtracted twice to cancel the corresponding base equation variables. So we
count 4 additions and 2 ∗ 5 subtractions for the loop equation. The core of
the whole pattern is now an array calculation with the loop equation and
seven more base equations.

BE = (LP, 7C24, 6C59, R2C6, 2B8, 4R8

| 6R24, R7C2, R8C45, R9C4, 2C6) = (71(24) + 726 + 616)

[BE→ 7R1, 7C6, R1C6] = [716]

The array calculation takes 7 additions and 18 subtractions. The final elimina-
tion calculation starts with building a group scoring one extra and reducing
the number of links to the target. Thus we have 2 link additions and 3 sub-
tractions of variables. All together we have a total score of 14 + 25 + 6 = 45
points. This is among others an example where building a group saves one
score point.
The notation of the pattern as an expression with all parts joined together
and the same score value:

[((6C26, 6R69, 6B4 | (∗))
, 7C24, 6C59, R2C6, 2B8, 4R8

| 6R24, R7C2, R8C45, R9C4, 2C6)

→ 7R1, 7C6, R1C6] = [716]

6E X P R E S S I O N C A L C U L AT I O N S

This chapter is meant to discuss more complex patterns that usually only
appear in “hard” Sudoku problems. The previous examples are not at all
“simple” and way beyond average human solving capability but do not
expose the full power of the BERT concept.

6.1 group links

This example shows two different aspects of groups and link equations that
do not overlap.

Diagram 10: False Link Overlap

The level 2 notation of this pattern is written as:

[(R2C379 R5C8 1B4 | 27R2 1C3 1R5)→ 8B3, 8C8] = [8(13)8]

An interesting point is the candidate 153, that seemingly is covered by two
links. This is not “wrong” logically but leads to nowhere. The calculation
procedure uses only variables that still exist at any stage of the calculation.
A partial pattern written in level 1 equations demonstrates that the two links
do not overlap. This is important and may lead to confusion sometimes.

R2C3 = (127)23 = 1
1B4 = 15(12) + 1(56)2 = 1

R5C8 = (18)58 = 1

 = 3

1C3 ≥ 123 + 1(56)2 ≤ 1
1R5 ≥ 158 + 15(12) ≤ 1

}
≤ 2

⇓ Subtraction

(27)23 + 858 ≥ 1

6.2 composite rings 46

This is more than a calculation trick. It shows that such patterns require
careful investigation, if they are kind of odd ring or base array. Both may
contain overlapped links.

The score calculation of the array part is (b− 1) + c = 14 points (b = 5, c =
10). The elimination part scores 4 points, if 82(79) is merged into a group.

One might ask why the number of targets appear nowhere in the calculation.
This is intentional. Although we have defined score values for patterns only
so far, the real purpose is to calculate a score value for a complete resolution
path. Any path of a particular puzzle has the same number of elimination
candidates in the end. So scoring the elimination candidates would just add
a constant value to every path.

6.2 composite rings

This example shows how calculations depend on each other.

Diagram 11: Composite Rings

The xsudo solver classifies this pattern as “franken jellyfish”. Traditional terms
are not precisely defined in most cases, but jellyfish is somehow related
to a 4-matrix. Unfortunately the matrix calculation relative to the current
resolution state is written as

[8B47 8C56 | 8R4679] = []

and results in an empty zero equation. There are no more targets in the four
link rows of the jellyfish.

To achieve an explanation for the eliminations 8(23)3, two partial patterns
are helpful.

6.2 composite rings 47

Both patterns are odd rings and also have some common elements. The
notation of the rings is:

P1 = (2 ∗ 8B7, 8B4, 8C6 | 8C1, 8R47) = (8(67)3 + 89(23))

P2 = (2 ∗ 8B4, 8B7, 8C5 | 8C1, 8R69) = (8(67)3 + 84(23))

The ring calculations produce (not forgetting the reduction) two base equations.
These will be put into the following array calculation.

[(P1, P2 | 8C2)→ 8C3] = [8(23)3]

To make it more understandable, a translation of the core pattern to level
1 follows. The BERT notation is extremely compact. Note that the array
calculation requires another reduction at the end.

P1 = (8(67)3 + 89(23)) ≥ 1
P2 = (8(67)3 + 84(23)) ≥ 1

}
≥ 2

⇓ Addition

2 ∗ 863 + 2 ∗ 873 + 892 + 893 + 842 + 843 ≥ 2

8C2 ≥ 842 + 892 ≤ 1

⇓ Subtraction

2 ∗ 863 + 2 ∗ 873 + 843 + 893 ≥ 1

⇓ Reduction

863 + 873 + 843 + 893 ≥ 1

The score of both partial rings is (b− 1) + c = 3 + 7 = 9. One of the bases
is doubled, therefore b = 3 + 1, one candidate is subtracted twice therefore
c = 6 + 1. The array calculation scores 1 + 2 = 3, (b = 2, c = 2). The
elimination calculation has only one link. This may happen and is not
unusual. With the 4 points elimination score the total score is 2 ∗ 9 + 3 + 4 =
25.
Of course one can explain this pattern by elementary logic or by generating
all solutions as a sub-puzzle or assuming the targets true and find a contra-
diction. There are four valid permutations of candidate values. Each assigns
a different one of the four candidates of the final base equation a true value.
But the purpose of this chapter is to show that it is possible to explain the
pattern with BERT calculations and make is accessible to scoring.
The notation of the pattern can be written as one composite expression:

[((2 ∗ 8B7, 8B4, 8C6 | 8C1, 8R47)

, (2 ∗ 8B4, 8B7, 8C5 | 8C1, 8R69)

| 8C2)→ 8C3] = [8(23)3]

6.3 cascaded rings 48

or even more compact:

[((8B477, 8C6 | 8C1, 8R47), (8B447, 8C5 | 8C1, 8R69)

| 8C2)→ 8C3] = [8(23)3]

Interestingly the expression does not work without the two sub-expressions.
The result is grammatically correct (8 bases, 7 links) but useless.

(8B777, 8B444, 8C56 | 8C11, 8C2, 8R4679) = (8(49)2 + 8(4679)3)

6.3 cascaded rings

This examples shows another type of ring interaction.

Diagram 12: Cascaded Rings

The calculation cannot be done in one step even applying appropriate base
equation duplications. We have to start with the innermost ring where two
link equations (cell,column) join at 876. Another ring including BS1 follows,
joining at 475. The next picture shows the isolated inner ring with green
colored candidates marking the resulting base.

6.4 network with rings 49

BS1 = (R4C6, 3C3, 388B8 | 8C6, 3R49, R7C6) = (946 + 3(78)5 + 8(78)5)

BS2 = (BS1, R4C8, 4C559 | R7C5, 9R4, 4B6, 4R7) = ((348)85)

The whole pattern in compact notation:

[((R4C6, 3C3, 388B8 | 8C6, 3R49, R7C6)

, R4C8, 4C559 | R7C5, 9C4, 4B6, 4R7)

→ R8C5] = [285]

The score of BS1 is 4 + 8 + 1 = 13 and of BS2 is 4 + 10 + 1 = 15 and 3 points
for elimination. This results in 31 total points. Building groups is optional
and does not alter the score.

6.4 network with rings

This section comes back to diagram1 as an fairly complex example. The
following pattern notation is given without detailed explanations. Decoding
such a pattern manually creates considerable headache. So try yourself. An
algorithm that does the job seems also to be quite a challenge.

The example is found by the xsudo solver, declaring the pattern as “rank 5
logic”. This only states that the core has 4 extra link equations and is no real
help to analyze the pattern.

X13A = (2 ∗ R7C6, R7C8, R9C479 | 8B8, 8R7, 2B9, 67R9)

X13B = (2 ∗ R7C7, X13A | 4R7, 4C7)

X13C = (2 ∗ R5C7, R5C6, X13B | 8R5, 8C7, 2C6)

X13D = (2 ∗ R5C9, R389C9, X13C | 276C9, 5B9, 6R5)

[X13D → 4C9, 4B6] = [449]

The pattern score is 54 points.

6.5 calculated matrix

Matrix patterns composed from native base equations are well known. The
next example shows a 3-matrix with a calculated component.

6.6 exocet 50

Diagram 13: Calculated Matrix

The upper part of the pattern conforms to the following BERT expression:

MBE = (2 ∗ R1C8, 2 ∗ R6C8, 2 ∗ 7R2, R3C8, R16C3, 16R2, 8B2, 2B1

| 8C8, 8R16, 67C3, 2 ∗ 7B3, R2C2346, 2R3) = (463, 468, 668)

The pattern contains overlapping links at 818 and 868, so the corresponding
bases appear twice. There is no overlap at 623, because 6C3 links only
613 and 663, similarly at 732. So this pattern has some interesting aspects.
The resulting base equation forms a 3-matrix together with 4R6 and R5C7.
There are three pairwise disjoint bases and three pairwise disjoint links with
the same candidates. Like in any other matrix the links complements are
eliminations.

[MBE, 4C6, R5C7 | 6B6, 4R56] = [452, 462, 467, 667]

≤ 1 ≤ 1 ≤ 1
4R5 4R6 6B6

MBE 46(38) 668 ≥ 1
4C6 456 466 = 1

R5C7 457 657 = 1
452 46(27) 667

Remark 6.1. Generally each time there is an elimination pattern with only one
target link, the pattern should be investigated for a calculated matrix. The
example section6.2 is not a calculated matrix, because the two base equations
P1, P2 are overlapping. So the matrix [P1, P2 | 8C23] is not a valid BERT
expression. (see definition 3.4)

6.6 exocet

Recently the most spectacular discovery of Sudoku solving is the exocet
pattern. To make exocet patterns accessible to scoring, an equation based
definition has to be found. This definition may or may not match other

6.6 exocet 51

attempts to define such patterns and is not intended to rival with other
definitions. It’s just the BERT view.

First we split an exocet into a central pattern and several support patterns.
The central pattern has two base cells sharing a box and either a row or
column and two target cells anywhere except in the box and column or row
of the base cells. The two base cells usually contain three or four number
symbols. Exocet patterns with more numbers are theoretically possible but
no examples are known.

This schematic diagram shows a configuration with three number symbols
represented by a, b, c. The central pattern lives in a box and row (column)
combination. The indices X and Y mark the base cell candidates and indices
R and S the candidates of the target cells and abci . . . is an abbreviation for
ai + bi + ci[+ . . .] = 1. Empty cells are without restrictions. Also some of the
candidates may be already cleared.

abcX abcY abc1 . . . abc2 . . . abc3 . . . abc4 . . . abc5 . . . abc6 . . . abc7 . . .
abc8 . . . abc9 . . . abc10 . . .
abc11 . . . abc12 . . . abc13 . . .

The groups tR, tS are the complements of the target cells and will contain the
elimination targets. abcR + tR abcS + tS

A pattern is an exocet, if the following equations are satisfied

aX + bX + cX = 1

aY + bY + cY = 1

aR + aS + ∑ ai ≥ 1

bR + bS + ∑ bi ≥ 1

cR + cS + ∑ ci ≥ 1

aR + bR + cR + tR = 1

aS + bS + cS + tS = 1

The missing ∑ index ranges can be any subset of {1 . . . 13} and may be
different for each number. All secondary conditions that prevent degenerate
configurations are omitted. These have no impact on the calculation.

The three equations in the middle are base equations that need to be calculated
by some support logic. Although exocet patterns are often found with
standard support patterns, any base equations satisfying the above conditions
will do.

Now we build (weak) groups A = MAX(ai), B = MAX(bi), C = MAX(ci)
with the same index ranges. These groups are linked to the base cells
(aX + aY + A ≤ 1 is true) etc. Now we can interpret the exocet as special
5-matrix.

≤ 1 ≤ 1 ≤ 1 = 1 = 1
aX bX cX = 1
aY bY cY = 1
A aR aS ≥ 1

B bR bS ≥ 1
C cR cS ≥ 1

tR tS

The sum of all columns of the matrix is ≤ 5, and by subtracting the first
five rows we get tR + tS = 0 taking into account that values are never
negative. This complies with the matrix definition (section3.5). It can be
tempting to assume that the first three columns of the matrix also eliminate
the remaining row/box candidates (A∗, B∗, C∗). This is a mistake because
A + A∗ � 1, meaning that A and A∗ is not linked.

In case the exocet pattern has four number symbols, we would get a 6-matrix
analogously.

6.6 exocet 52

The abstract exocet construction is illustrated with the next example.

Diagram 14: Exocet

The drawing with all bases and links can hardly show the structure of the
equations explained above. So we create a separate diagram for each number.
The example has four number symbols in the base cells and therefore needs
four support patterns each producing a base equation that fits the definition.
Consequently we get a 6-matrix as central pattern.

The resulting base equation candidates are marked green. Each calculation
takes three columns and a box as base and three rows as link. The boxes
overlap with a column, but the overlapping candidates are part of the result
and therefore friendly. We get four support expressions.

S2 = (2C168, 2B2 | 2R249)

S3 = (3C168, 3B2 | 3R246)

S7 = (7C168, 7B2 | 7R249)

S8 = (8C168, 8B2 | 8R279)

Now we can write the whole pattern as a composite expression. The link
section of the matrix uses special syntax elements that occur only in an exocet
matrix.

[R1C23

6.6 exocet 53

, (2C168, 2B2 | 2R249)

, (3C168, 3B2 | 3R246)

, (7C168, 7B2 | 7R249)

, (8C168, 8B2 | 8R279)

| R3C46, 2378B2R1] = [534]

and calculate the score: S1 : (3 + 9) = 12, S2 : (3 + 8) = 11, S3 : (3 + 9) =
12, S4 : (3 + 10) = 13. The matrix: 5 + (6 + 5 + 6 + 6 + 7) = 35. The
subtractions are in parenthesis. The 7 points at the end come from subtracting
the variables from R1C23.

The total score is 35 + 12 + 11 + 12 + 13 = 83 points showing that exocet
patterns are pretty expensive.

A number of variants of exocet patterns exist, but all of them share the central
matrix. The leading base equations are always cells. This is due to the
Sudoku construction.

7
E Q U AT I O N R E - U S E

Re-using intermediate results when solving problems is very natural. The re-
use of eliminations in Sudoku solving is pretty common, but usually not even
recognized as such. Traditional solving seems to understand eliminations as
isolated events that “appear” somehow. From the BERT point of view re-use
an elimination in the middle of a resolution path is not an isolated event but
the last step of a pyramid of other steps originated from basic equations.

Eliminations are just re-usable value equations of the form d = 0. Their only
purpose is to justify value equations d = 1 or enable further intermediate
results. There is no reason to restrict the resolution to elimination re-use
only. The BERT resolutions use additionally re-usable equations of the form
a1 + . . . + an ≥ 1 and a1 + . . . + an = 1 . Re-using such equations opens
the possibility to find more “efficient” resolution paths. The efficiency is
measured by the scoring explained in the previous chapters.

The following examples are manually derived from standard resolution paths.
The selection is limited due to lacking solver support. It is likely that there
are lots of re-use opportunities in every resolution path.

7.1 re-use of base equations

Once a base equation is calculated it will indicate a single elimination like any
native base equation, if all but one candidate of the equations is zero.

Diagram 15: Base Equation Single

The candidate 123 is eliminated by the expression

A = (39R3, 6B1, 1C4 | R3134) = (124 + 623)

[A→ R2C3, 1R2] = [123]

If it happens that later 623 is cleared, we remember the base equation
124 + 623 ≥ 1 and immediately get 124 = 1 ⇒ 134 = 0. The traditional
elimination would be 6(789)3 = 0 by box-line interaction and then eliminat-
ing 134 by a triple. This is not wrong but inefficient by almost any concept
of “simplicity”.

Base equation singles are very valuable in order to minimize the global score.

7.2 double use

The next example had been subject of a discussion whether it contains
one or two eliminations. With the BERT concept this questions becomes
meaningless. The pattern is interpreted as three calculation steps. The

7.3 partial re-use 55

first is a base equation calculation continued by two different elimination
calculations.

Diagram 16: Double Use

The BERT interpretation of this pattern constructs an array calculation and
two elimination calculations with different links.

B = (9C6, 9B6, 5C8, 7R2 | R2C6, R6C8, 9R4)

[B→ R1C8, 7B3] = [718]

[B→ R2C9, 5B3] = [529]

]
The score is 10 points for the base and 3 points for each elimination.

7.3 partial re-use

This example shows how two similar patterns that share common parts are
scored.

Diagram 17: Partial Re-Use

The lower diagram shows two eliminations mixed with the common part.
Both patterns share the base equation SD with score (4 + 9) = 13

SD = (127R9, R8C3, R7C8 | R9C46, 1B7, 7B9)

= (878 + 883 + 297)

7.3 partial re-use 56

and are continued

[(R8C8, SD | 2B9)→ 8R8, 8B9] = [887]

[(2 ∗ R8C8, SD | 8R8, 8B9)→ 2B9] = [287]

and the scores are (1 + 2) + 3 = 6 and (2 + 3) + 2 = 7. The shared part is
counted only once of course.

8PAT T E R N D E C O M P O S I T I O N

This chapter gives some hints, how to identify base and links in an arbitrary
pattern. This information helps translating patterns into BERT notation.
More investigation is needed on this topic.

8.1 fragments

Key Point What are the atomic parts of a BERT pattern ?

There are always sub-expressions of a pattern that allow no more decom-
position. Certain types of such atomic fragments occur frequently. The
following pictures show fragments an abstract manner. The green variables
are members of the result base equation and contain at least one true variable.

Diagram 18: 2-Base Fragment
The simplest type is two linked bases.
Such fragments are part of chained
patterns.

Diagram 19: 3-Base Fragment
Another fragment type consists of tree
bases and two links. Such fragments
are found in patterns with ALS.
Usually only some of the variables are
still existing in a particular resolution
state.

Diagram 20: Combined Fragments
Fragments can be combined if they
share bases. The blue base is the
shared one. Some of the green result
variables always turn to link variables
when combining.

Diagram 21: Ring Fragment
A more interesting fragment relates to
odd ring patterns. The doubled base
is shown at the top. This fragment
represents not a ring equation, but
combined with other fragments that
close the ring along the dotted line, it
is the key part.

8.2 translation 58

Diagram 22: Overlap Fragment

Amazingly this fragment for
overlapping bases and overlapping
links is very similar to the previous
one.

It is not intended to give a full list of all possible fragment types. But
fragments are very helpful to analyze patterns and for the translation into
BERT equations. A fragment contains always all bases that share a common
link as a matter of principle. So each link in a pattern related to exactly one
fragment whereas the connecting bases appear repeatedly. A complete list of
occurring fragments can be derived from any individual pattern.

8.2 translation

Key Point How to translate arbitrary pattern diagrams into BERT expressions ?

This example is picked from a list of hardest Sudoku and shows an early
elimination pattern generated by the Sudoku Explainer program.. The shown
pattern does not depend on the previous eliminations.

1.3....8..5......6..9.2.1.......4..78...9..1....5....23..6......4...7.....1.3..2.

Diagram 23: Translation Sudoku Explainer

The program labels the pattern as “dynamic contradiction forcing chain”. The
explanation accompanying the diagram consists of lengthy implication chains
that finally construct a contradiction. The conclusion justifies the elimination

8.2 translation 59

of candidate 991. Although logically correct, it’s up to ones personal view of
a good explanation.

The first problem when trying to translate the pattern into BERT expressions
is: how to identify whether arrows in the diagram are bases or links. The
explaining text helps a little, because only bases can imply a value 1. Next
we discover that some bases or links (mainly cells) not even have arrows,
and can only be identified indirectly. But in the end we have a list of bases
and links. For verification of the findings we put the result into the xsudo
program.

Diagram 24: Translation Xsudo

We found 17 non-overlapping native base equations and 16 link equations.
Two extra link equations point to the target. The first attempt build a BERT
expression is to try a base array calculation, because the the number of bases
exceeds the links by one. This approach is successful here.

(139B2, 139B4, 138B5, 1289B8, 1389C9 |
R2C46, R46C2, R48C4, R67C6, R78C9, 18C5, 3R35, 8R9, 9R1) =

(9(46)1 + 99(46) + 999)

[(9(46)1 + 99(46) + 999)→ 9C1, 9R9] = [991]

This expression verifies the elimination. At least one candidate of the result
has a value 1. It is recalled that the result equation remains valid regardless
how many candidates will get definite values later.

As one would expect a rather complex expression for the pattern, the flat
array expression is nice and disappointing at the same time. The main inten-
tion of the BERT abstraction is not to reflect the connectivity of the pattern
or describe all properties, but to identify the preconditions of eliminations
and to have a basis for scoring.

8.3 sub-expressions 60

8.3 sub-expressions

The previous section explains that connectivity limits the options of building
sub-expressions, if the pattern contains 3-base (or more) fragments. The
above example will be taken to demonstrate the limits of sub-expressions.

BOX2 = (139B2 | R2C46) = (125 + 3(46)3 + 91(46))

BOX4 = (139B4 | R46C2) = (352 + 9(46)1)

BOX5 = (138B5 | R4C4, R6C6) = (1(46)5 + 35(46) + 8(46)5)

All three sub-expressions have a 2-matrix with two cell links and there are
no sub-expressions possible. BOX2, BOX4 and BOX5 are classical ALS and
3-base fragments. The three sub-expressions are valid base equations and
may be re-used later if appropriate.

A general rule for building sub-expressions is to incorporate all bases that
share the same link. So two bases can be combined safely, if they share
one link exclusively. Three bases can be combined, if they share two links
exclusively. Otherwise the balance of base and link numbers is violated. Ex-
ceptions from this rule require overlapping bases and special configurations.

According to the rule BOX2 is combined with 39C9 then with 18C9 and
BOX5 with 8B8.

BOX2A = (BOX2, 39C9 | 3R3, 9R1) = (125 + 3(58)9 + 9(789)9)

BOX2B = (BOX2A, 18C9 | R78C9) = (125 + 359 + (89)99)

BOX5A = (BOX5, 8B8 | 8C5) = (1(46)5 + 35(46) + 89(46) + 884 + 876)

Now the sub-expressions are assembled to represent the whole pattern again.

(BOX4, BOX2B, BOX5A, 129B8 | 3R5, R8C4, R7C6, 1C5, 8R9) =

(9(46)1 + 99(46) + 999)

The equivalent equation diagram is more visual and reveals more possible
sub-expressions.

3R5 8R9 1C5 R8C4 R7C6 ≥ 1
BOX4 352 9(46)1

BOX2B 359 899 125 999
BOX5A 35(46) 89(46) 1(46)5 884 876

1B8 1(78)5 184 176
2B8 284 276
9B8 984 976 99(46)

Combining BOX2B and BOX5A gives:

BOX2B5A = (BOX2B, BOX5A | 8R9) = (1(246)5 + 35(469) + 884 + 876 + 999)

3R5 1C5 R8C4 R7C6 ≥ 1
BOX4 352 9(46)1

BOX2B5A 35(469) 1(246)5 884 876 999
1B8 1(78)5 184 176
2B8 284 276
9B8 984 976 99(46)

continued:

BOX245 = (BOX4, BOX2B5A | 3R5) = (1(246)5 + 884 + 876 + 9(46)1 + 999)

BOXALL = (BOX245, 1B8 | 1C5) = ((18)84 + (18)76 + 9(46)1 + 999)

8.3 sub-expressions 61

R8C4 R7C6 ≥ 1
BOXALL (18)84 (18)76 9(46)1 + 999

2B8 284 276
9B8 984 976 99(46)

The pattern is now represented by an expression with all sub-expressions
collapsed into BOXALL.

(BOXALL 29B8 | R8C4 R7C6) = (9(46)1 + 99(46) + 999)

Finally we can write the pattern expression explicitly with all developed
sub-expressions. The score is not always affected by building sub-expressions
and counts 77 points including the elimination.

((((139B4 | R46C2) ((((139B2 | R2C46) 39C9 |
3R3 9R1) 18C9 | R78C9) ((138B5 | R4C4 R6C6) 8B8 | 8C5) |

8R9) | 3R5) 1B8 | 1C5) 29B8 | R8C4 R7C6)

=

(139B2 139B4 138B5 1289B8 1389C9 |
R2C46 R46C2 R48C4 R67C6 R78C9 18C5 3R35 8R9 9R1)

The resulting expression is hardly human readable but perfectly machine
readable. It reflects in some sense the connectivity of the pattern. The nested
sub-expressions correspond to nested ALS and chain connections. This
example demonstrates the potential of sub-expressions of a fairly complex
pattern. Most of them are not needed because there is no re-use later. It’s not
even sure that the elimination itself has some relevance. Sub-expressions are
only useful, if they are a necessary part of the calculation or being re-used in
other calculations, but this is not directly obvious in many cases.

9
S T R AT E G Y

Key Point What means “strategy” in a Sudoku resolution theory ?

We can look at a common definition: “Strategy is a high level plan to achieve
one or more goals under conditions of uncertainty.”1

This a good start. One goal is certainly to reach a solution, but without
secondary goals Sudoku solving is pointless.

The secondary goals of the BERT concept have three components that reflect
the informal requirements stated in section2.2.1.

1. Only patterns that are candidate minimal are used.

2. Patterns must have a description as arithmetic expressions.

3. Seek the simplest resolution path measured in score points.

There is no real strategy in Sudoku because there is no uncertainty. A Sudoku
problem is finite and the resolution path with lowest score exists and can
be found theoretically. But Sudoku problems are “hard” and therefore the
minimal resolution path can only be obtained by checking all possible cases.
This is practically impossible even with excessive computer support. So
we have a quasi-uncertainty and a quasi-strategy to approximate the score
minimum.

9.1 simplest first

Manual solving looks for single eliminations first, then box-line-interactions,
then pairs, then more sophisticated methods in an almost predefined order.
Most solver use a strategy like that, mimic and automate manual solving.
This strategy is designed to find the step associated with the lowest “size”.
Putting aside the lack of a general size definition (except for braids), most
methods or stages of dynamic methods can be arranged according to some
partial order. We can call this the traditional strategy.

The BERT scores of resolution paths produced by such traditional strategy
are not really bad but not good either. This has a very simple reason.

The leading idea of this strategy is that each elimination brings the solving
nearer to the solution, and therefore using steps of small size should result
in an overall simple solution path. But this is only true, if the “simplicity”
is determined by a single and distinct step selected as the “most complex”
one. As soon as more than one step enters into the calculation, simplest first
cannot deliver the optimal score. This is the case for any scoring model one
might choose, and of course for the BERT scoring.

9.2 one-step look ahead

When analyzing some solver generated or manual resolutions paths one
easily can notice a typical effect that occurs frequently. A number of elimi-
nations are performed but there seem to be no substantial progress. Then
almost all of a sudden an elimination hits the right point and a series of
simpler eliminations follow. This may recur several times.

Looking deeper into the subject we find that an elimination has two com-
pletely different implications. One is of course clearing one or more targets,

1 see http://en.wikipedia.org/wiki/Strategy

http://en.wikipedia.org/wiki/Strategy

9.3 positioning issues 63

the other is enabling follow-up eliminations that were not possible before
clearing the targets. The latter is indeed the more important one. An elimi-
nation that has no follow-up in the current resolution state is not urgent and
can be kept in reserve until needed. This is the idea of one-step look ahead.

The execution of eliminations on demand clearly disrupts any predefined
order of methods. If the effect would be only some reshuffling of the moves,
the strategy is not worth discussing. But in almost all cases some eliminations
become completely redundant, others are superimposed by single eliminations.
This has severe implications on how to approximate the minimal score of a
Sudoku problem.

9.3 positioning issues

In the previous chapters (and in traditional solving too) eliminations are
considered to be relative to a particular resolution state. They seem to pop
out of the blue and found by more or less tricky methods. This is a very
limited view. With changing the order of the elimination sequence inside
a resolution path we arrive at new problems. Placing an elimination at a
different position creates a number of issues.

If the elimination is delayed, i.e. placed past the original position in the
resolution path:

• (1) There may be less elimination candidates left. If none of them
remains, the pattern becomes obsolete.

• (2) The elimination pattern is reduced by some cleared candidates of
the original pattern.

• (3) The pattern is partially dissolved by candidates with value one.

If the elimination is shifted to a position earlier than the original:

• (4) The pattern may be not be ready to work.

• (5) There may be more elimination candidates compared to the original.

• (6) There may be extra but not harmful candidates in the pattern.

These situations are covered with the BERT notation by the same description,
at least to some extent. Now it becomes apparent that the notation is also
designed to support flexible positioning of eliminations. This property is a
precondition for performing optimizations of resolution paths in a convenient
way. All parts have stable identifiers and are well defined from the start.

9.4 position independence

To support the look ahead strategy effectively all eliminations will be trans-
formed to a pattern that is relative to the beginning of the resolution path. For
pragmatic reasons this is the resolution state one. This way all eliminations
become absolute in this special way.

The consequences are explained with the following examples. At first we
take diagram5 mapped to state one.

9.4 position independence 64

Diagram 25: Absolute Matrix

000000600000402030009000007040903010000080000030504000600000900010300040007000008

This matrix is clearly not ready at resolution state one, but requires all 10
candidates marked with a black cross to be cleared before.

(12)11 + (12)13 + (12)79 + 237 + 273 + 29(17) = 0

The above equation is called trigger equation of the matrix. It represents
the condition for the earliest position in the resolution path where the
elimination can be applied. The three candidates 212, 238, 295 marked with
”?” are already cleared in diagram5, but are not part of the trigger equation.
Their status does not have any impact except some score variation. The
notation of the matrix expression remains the same, but has some more
elimination candidates in the result term.

[2R1379, 1C9, 1B1 | 2C28, 2B8, 1R2, R1C9, R3C1]

= [252 + 285 + 2(56)8 + (459)19 + 12(57) + (3458)31]

Eliminations calculations on top of a base equation behave slightly different.
The next pattern shows diagram12 mapped on resolution state 1.

9.5 elimination life-cycle 65

Diagram 26: Absolute Rings

050004900300000000007090001070160200002000050086000000001600000000900007040005080

In this case the trigger equation is

229 + 4(56)5 + 38(36) = 0

and belongs to the combination of base calculation and elimination calcula-
tion. A trigger equation for a base equation alone makes no sense.

There is one elimination candidate at 285 and two candidates 348, 886 that
are already cleared in diagram12, but these are not trigger candidates. The
result expression remains the same.

[((R4C6, 3C3, 388B8 | 8C6, 3R49, R7C6)

, R4C8, 4C559 | R7C5, 9C4, 4B6, 4R7)

→ R8C5] = [285]

Any elimination is accompanied by a trigger equation. The elimination is
ready to fire, if all trigger candidates are cleared.

9.5 elimination life-cycle

The BERT notation is designed to be invariant to the actual position in the
resolution path. This allows to calculate the trigger candidates and the target
candidates from the notation expression before the elimination is applied.
There may be slight changes of the score value, if some of the candidates are
cleared formerly.

The life-cycle of an elimination begins in a pending state. The trigger equation
defines the earliest point where the elimination can be executed. Of course
the trigger equation may be empty. Whether or not the elimination is used
depends on the strategy.

There are three ways to end the life of an elimination

9.5 elimination life-cycle 66

1. The elimination is executed.

2. All possible targets are already cleared.

3. A base equation is resolved.

4. A link equation becomes obsolete.

The last two conditions are about the identity of eliminations and their com-
ponents. We say that the identity is lost, when one of equations is becoming
trivial. This a pragmatic definition. In that case a pattern disintegrates into
smaller parts, if not completely. The decay pattern can be still complex but is
regarded as a different pattern than the original. It should be noted that a
base equations or an elimination equation always remain valid regardless
how many candidates of the pattern are assigned to a definite value.

10
O P T I M I Z AT I O N

The absolute optimal BERT resolution path is the one with the lowest possible
score. This ideal result can only be obtained by checking all possible cases.
This is practically impossible. It is a “hard” problem and no formula or
shortcut can do the job. So the only chance is to approximate the lower
bound of the score.

Optimization is different from strategy that tries to answer the question
“what to do next” in a particular situation. Optimization rather takes an
analytic top-down view on Sudoku. And this means far more than reducing
the redundancy of a resolution path by deleting unnecessary steps combined
with rearranging the order of steps. A number of alternative steps should be
considered too. They may stem from several solving attempts of the same or
of different solvers.

10.1 first results

The question asked in section1.4.4 is now ready for an answer. The example
is simple enough to evaluate all possible combinations of steps. The lowest
BERT score is 8 points. The corresponding resolution path:

[48B7|R7C3,R8C2] [7B7|7R9] [6B9|6R9] [6B7|6C1]

With only group singles (box-line) the resolution path needs 14 steps with one
point each.

[2C9|2B3] [2C1|2B7] [3C9|3B3] [3R1|3B1] [1C1|1B7] [5C1|5B1] [5R1|5B3]

[5B8|5R7] [9C9|9B9] [9R9|9B7] [6C1|6B7] [1R9|1B9] [4C9|4B9] [6R9|6B9]

So the first path is the winner. I would like to avoid the term “better”. It is
merely the path with lesser BERT function points.

10.2 concept

The starting point of the optimization is a collection of eliminations that
can occur at some resolution state of a particular puzzle. The collection
must of course contain at least one complete elimination sequence. Some
eliminations may share common parts in form of base equations. So the
optimization is not aiming at the absolute optimum, but works in the scope
of an explicit collection. To come near to score optimum of a puzzle, the
one-step look ahead strategy is used. This means that for each resolution state
a number of eliminations exists that are ready to fire. The readiness of an
elimination is determined by an associated trigger equation.

The one-step look ahead puts all ready eliminations on hold unless their targets
enable at least one more elimination. The others are waiting. This applies not
for simple single eliminations for performance reasons. These are executed
greedily and all the others on demand. Although this disrupts the order of
moves, it does not alter the total score.

There is a prototype implementation of an optimizer that

• translates elimination notations to level 1

• checks for obvious errors

10.3 input 68

• checks for completeness

• calculates scores

• allows stepping through choices manually

• steps through all choices automatically

The automatic mode works with a modified Dijkstra algorithm1 to find the
shortest path in a graph. The nodes are the resolution states. Unlike the
original algorithm the nodes are creates on demand. This is mandatory
because the node distances depend on previous nodes. The algorithm
requires naturally a lot of memory resources.

10.3 input

The current implementation of my optimizer requires input as below. The
main part of this input is written in BERT notation. Machine readable
optimizer input is the central motivation for that notation.

The following example is about a reasonably difficult puzzle (SER = 9.1).
The main path is generated by Xsudo and shown in full length. Some manual
changes are made and the ALT sections contain selected steps taken from
other solvers.

1 Dijkstra Algorithm https: // en. wikipedia. org/ wiki/ Dijkstra's_ algorithm

https://en.wikipedia.org/wiki/Dijkstra's_algorithm

10.3 input 69

$$BERT V1

$SUDOKU=050037008000061350309000000000310200105790030003400001960070003004003900530009010

$PATH=XSUDO

step 1+2 group single

step 3 (two string kite)

XS3=[(5R4,5B9|5C9)->5C6,5R7]

step 4 (single ALS logic)

XS4=[(R12C4,1C24,8R3|89B2,1R8,R3C2)->R7C4,2C4]

step 5 (DN-loop grouped) covered by step 7

#XS5=[(7R3,15R7,1C2,59C9|R3C2,R7C4,R4C9,1B7,5B9)->R2C9,7B3]

step 6 group single

step 7 (looped chain)

XS7=[(2*9C9,9C8,5C9,1R17,4B3,5B8|1C3,R1C78,5R8,R7C4,R4C9,9B6)->R2C9]

step 8 (chain)

XS8=[(2*4R3,58R3,24R5,R1C7,1R3,4R9|4C59,R3C245,R5C2,14C7)->R3C6,2C6]

step 9 (rank 3 logic)

X9A=((2*5R7,5R68|5C57,5B9),2*1C4,16C3,26C6|R1C3,R56C6,R7C4,6R4,1R7)

XS9=[X9A->R8C4,2B8]

step 10 (rank 3 logic)

XS10=[(X9A,6C4|R8C4)->R9C4,2B8]

step 11 group single

step 12 (rank 4 logic)

X12A=(2*R1C7,R1C8,R2C9,2C9,4R9|249B3,4C7,R9C9)

X12B=(X12A,2*2B8,R6C5,5C7,R7C4,1C3|2C5,5R67,1R17,2R8)

XS12=[(X12B,4R79|R7C6,4B9)->R9C5,8B8,8C5]

#[(((2*R1C7,R1C8,R2C9,2C9,4R9|249B3,4C7,R9C9),2*2B8,R6C5,5C7,R7C4,1C3|

2C5,5R67,1R17,2R8),4R79|R7C6,4B9)->R9C5,8B8,8C5]

step 13 (rank 5 logic)

X13A=((2*R7C6,R7C8,R9C479|8B8,8R7,2B9,67R9),2*R7C7|4R7,4C7)

X13B=(2*R5C7,R5C6,X13A|8R5,8C7,2C6)

XS13=[(2*R5C9,R389C9,X13B|276C9,5B9,6R5)->4C9,4B6]

step 14 (rank 4 logic)

X14A=(2*5B5,5C7,8C5,5R8,4R3-5R6,R68C5,5B9,R3C5)

X14B=(2*1R3,6R38,4R9,R1C7,R5C9|R3C7,14C7,6C89,4C9)

XS14=[(X14A,X14B,1R8,4R3|1C2,R8C4,4C5)->R3C6,5C6]

step 15 group single # step 16 (rank 3 logic)

XS16=[((2*R6C5,R8C5,R4C6,5C9|8B5,8C5,5R48),2*2B4,6B4|6R4,2R6,R6C1)->2C2,2R8]

XS17=[(2*1R7,1R8,5R67,6C36,2C6,1B1|1C24,R1C3,R7C4,R56C6,5C7,6R4)->R7C3,2R7]

XS18=[(2R57,2C9|2C6,2B9)->2C2,2R3]

XS19A=(R3C2,1R8|1C2)

XS19=[(8B2,XS19A|8R3)->R8C4,8C4]

XS20=[(8R2,R9C4,XS19A|8B1,8C4)->R8C4,6C4]

XS22A=(6R8,2R7,8C8|R78C8)

XS22=[((2*8R5,6R5,XS22A|R5C7,8B6,6C9),2*2R5|R5C6,2C6)->R5C2]

XS24=[(2R157,9R1,4C8|R1C48,R7C8,2C6)->2C2,2B1]

XS26=[((2*5B9,5B6,9C9,R1C8,4R7|R7C7,5C7,R4C9,9B3,4C8),6R8,2R7-R8C9,R7C6)->R8C8,2C8]

XS27=[(2*5C6,6C6,5C9,28R5,XS22A|R4C6,5R4,R5C26,R8C9,8B6)->R6C6,2C6]

XS28=[(((2*R6C5,8C7,8B8|8R67,8C5),2*2C6,R5C2|28R5,2B5),4R7|R7C6)->4B9,R9C7]

XS29=[(R569C7,R5C9,5C9,6R8|78C7,R8C9,45B6)->6C8,6B6]

XS30=[(2*1R1,6R16,8R9,5R6,7C7,R7C3|R1C3,R6C67,R9C7,18C3,6C1)->1C7,R3C7]

XS_P33={R12C4|29C4} # (naked pair)

XS35=[(45C7,R5C9|4R5,R7C7)->R6C7,6B6]

XS36=[(R39C7,6C8|7C7,6R3)->R8C8,8B9]

XS37=[(R7C4,5C7,8C8|58R7)->R6C7,8B6]

XS38=[(R5C9,4C7,5B9|4R5,R7C7)->R8C9,6C9]

10.4 verification 70

XS40=[(R6C7,2R3,7C8,5C9|57B6,R3C8)->R8C9,2C9]

XS41=[(R58C2,2R68|28C2,2C5)->R8C1,7R8]

XS42=[(R6C7,5C9,7R8|5B6,R8C9)->7C2,7R6]

XS43=[(2*5R4,5R6,6C6,6B6|R4C9,5B6,6R5,R6C6)->R4C6]

XS44=[(R6C7,25C9,6R3,7B9|R389C9,5B6)->R3C7,7C7]

XS46=[(R8C9,57C7|R6C7,5B9)->7B9]

XS_P47=[R9C59|24R9] # (naked pair)

XS_P49=[R7C4,R8C5|58B8] # (naked pair)

XS50=[(R5C2,8R8,2B5|2R5,8C2)->R6C5,8C5]

XS52=[(8R4,9R6,7C8|R46C8)->R6C2,8B4]

XS54=[(R2C34,R4C39|2R2,7C3,6R4)->9R2,9C9]

$ALT=SUEX

SE8=[(4C6,4C8,2B3,24R5|R5C2,R1C8,4B6,4R7)->R3C6,2C6]

SE9=[(1R7,1B1,8R3,R12C4|1C3,R3C2,8B2,9C4)->2C4,R7C4]

SE10=[((3*1C4,5R67,5B8,16C3,26C6|2*R7C4,5C57,R1C3,R56C6,6R4,1R7),6C4|R8C4)->2B8,R9C4]

$ALT=OTHER

LX8=[(4C68,4B4,2R5,29B3|4R47,R5C2,R1C8,R2C9)->2R3,2C6,R3C6]

LX13=[(146C7,R5C9,56B9|R137C7,4R5,R8C9)->6B6,6C8]

LX18=[(8R8,2B7,R5C2,2C6,R6C5|R8C1,8C25,2R5)->2R9,2C5,2B8]

HO20=(1B1,8R2,R3C2,6C36,2R5,5R67|R1C3,8B1,6R4,R5C6,2C2,R6C6,5C7)

HO21=((HO20,2*1C4,5B8|2*R7C4,5C5),1R8|1C2)

HO22=[HO21->8C4,R8C4]

HO23=[(HO21,R9C4|8C4)->6C4,R8C4]

The file structure is pretty simple. The first line assures that the content is
related to BERT. Comments start with ’#’. The following line contains the
Sudoku puzzle. Then there are some names sections or the type “PATH” or
“”ALT”. Any PATH section must contain a full path with a sequence that
solves the puzzle completely.

For convenience singles and group singles need not to be listed. These are
automatically generated by the current optimizer implementation. Calculated
base equations generate equation singles also if appropriate.

10.4 verification

The input data on level 2 do not show any candidates intentionally, neither
for the logic network nor for targets. To check the correctness of eliminations
recorded in such a way, equations are translated into level 1. All components
are shown with their candidates relative to resolution state one. Trigger and
targets can be verified to match the original pattern.

The log output of the verification phase of the optimizer is shown for steps
X9A, XS9 and XS10 as an example.

10.5 optimization result 71

$ SRC _006=(2*5R7 5R68|5C57 5B9)

+ ROW 5R7=(574*,576,577)

+ ROW 5R7=(574*,576,577)

+ ROW 5R6=(565,566,567*)

+ ROW 5R8=(584,585,589*)

- COL 5C5=(535*,565,585)

- COL 5C7=(567*,577)

- BOX 5B9=(577,589*)

= EQU _006=(566,574*,576,584) VAL=9

EQS [_006|*]=[534,174,274,874,576,577,584,585] CORE=(574*) TRIG=[566,576,584] VAL=9

$ SRC X9A=(_006,2*1C4,16C3,26C6|R1C3,R56C6,R7C4,6R4,1R7)

+ EQU _006=(566,574*,576,584) VAL=9

+ COL 1C4=(174,184*)

+ COL 1C4=(174,184*)

+ COL 1C3=(113,173*)

+ COL 6C3=(613*,643)

+ COL 2C6=(236,256,266,276*)

+ COL 6C6=(646,656,666*)

- NUM R1C3=(113,213,613*)

- NUM R5C6=(256,656,856*)

- NUM R6C6=(266,566,666*,866)

- NUM R7C4=(174,274,574*,874)

- ROW 6R4=(641*,643,646,648,649)

- ROW 1R7=(173*,174)

= EQU X9A=(236,276*,576,184*,584) VAL=28

$ SRC XS9=[X9A->R8C4,2B8]

+ NUM R8C4=(184*,284,584,684,884)

+ BOX 2B8=(274,276*,284,285,294,295)

- EQU X9A=(236,276*,576,184*,584) VAL=28

= TGT XS9=[284] CORE=(276*,184*,584) TRIG=[236,576] VAL=32

$ SRC _007=(X9A,6C4|R8C4)

+ EQU X9A=(236,276*,576,184*,584) VAL=28

+ COL 6C4=(684,694*)

- NUM R8C4=(184*,284,584,684,884)

= EQU _007=(236,276*,576,694*) VAL=32

$ SRC XS10=[_007->R9C4,2B8]

+ NUM R9C4=(294,694*,894)

+ BOX 2B8=(274,276*,284,285,294,295)

- EQU _007=(236,276*,576,694*) VAL=32

= TGT XS10=[294] CORE=(276*,694*) TRIG=[236,576] VAL=35

The input data and results are translated to level 1 and listed for each
expression and sub-expression. Nested expressions will be decomposed
recursively. Implicit sub-expressions get automatically generated names
beginning with “_”. Candidates marked with “*” are solution values. The
score values are calculated with all candidates of the pattern that are live
at state one. So these values are the maximum possible score values for the
patterns.
The base equation _006 creates an additional base equation single, _007 does
not because it contains two solution values.
The log output is sufficient to check the notation manually for correctness.
There are limited internal plausibility checks also.

10.5 optimization result

As the main path is generated by Xsudo with it’s own concepts to choose
the order of steps. So one cannot expect a good BERT score from the start.
Manual changes had been made dropping obviously unnecessary steps and
for the usage of shared parts to demonstrate the effect of re-use. This results

10.5 optimization result 72

in a total score of 699 points. The optimizer finds a path of 536 points by
reshuffling and dropping eliminations. If the elimination set is extended
with a few patterns from other solvers, a path with 495 points is achieved.
Although this seems to be a good result there is no way to be sure about.

GRP [4B2|4R3]=[432,437,438,439] CORE=(435,436*) TRIG=[] VAL=1

TGT XS3=[576] CORE=(546*,577) TRIG=[] VAL=6

TGT XS7=[229,729] CORE=(429*,929) TRIG=[437-,438-,439-,576-] VAL=25

TGT LX8=[236] CORE=(436*,238*,239,256) TRIG=[438-] VAL=22 (-1)

TGT XS4=[274] CORE=(214*,224,174) TRIG=[] VAL=18

TGT XS9=[284] CORE=(276*,184*,584) TRIG=[236-,576-] VAL=32

TGT XS10=[294] CORE=(276*,694*) TRIG=[236-,576-] VAL=7 (-28)

GRP [6B1|6R1]=[617,618] CORE=(611,613*) TRIG=[] VAL=1

TGT XS12=[895] CORE=(865,874,295,495*)

TRIG=[617-,618-,229-,729-,274-,284-,294-] VAL=51

TGT XS14=[536] CORE=(436*,546*,566) TRIG=[617-,432-,437-,438-,439-,895-] VAL=49

GRP [5C6|5B5]=[565] CORE=(546*,566) TRIG=[536-,576-] VAL=1

TGT XS17=[273] CORE=(173*,276*) TRIG=[236-,565-,576-] VAL=28

TGT XS18=[232] CORE=(239,252*) TRIG=[229-,273-,274-] VAL=10

GRP [7B3|7R3]=[732] CORE=(737,738,739*) TRIG=[729-] VAL=2

TGT XS20=[684] CORE=(184*,694*) TRIG=[232-,432-,732-,294-] VAL=14

2 SINGLES [894,697,699]

TGT XS27=[266] CORE=(566,666*,276*) TRIG=[536-,273-,274-,576-,684-] VAL=30

TGT XS19=[884] CORE=(824,184*) TRIG=[232-,432-,732-] VAL=8 (-3)

TGT XS22=[452] CORE=(252*,852) TRIG=[273-,274-,684-] VAL=19 (-6)

TGT XS28=[497] CORE=(477,478*,897) TRIG=[236-,452-,565-,266-,884-,894-] VAL=27 (-1)

TGT LX13=[648,668] CORE=(657,659*,667,688*) TRIG=[497-,697-,699-] VAL=20 (-2)

TGT XS30=[137] CORE=(117*,737) TRIG=[617-,618-,565-,668-,273-,894-,895-] VAL=25

7 SINGLES [113,417,832,873,174,182,584]

GRP [4R5|4B6]=[448,449] CORE=(457*,459) TRIG=[452-] VAL=1

TGT XS16=[282] CORE=(252*,262,285) TRIG=[565-] VAL=27

TGT XS36=[888] CORE=(688*,897) TRIG=[618-,137-,437-,648-,668-,497-,697-] VAL=9

TGT LX18=[295] CORE=(265*,276*,293)

TRIG=[236-,452-,565-,266-,273-,282-,884-,888-] VAL=17

4 SINGLES [435,836,476,499]

MATRIX SE_P32=[218,618-,229-,729-] TRIG=[417-,437-,438-,439-]

CORE={418,918*,429*,929} VAL=5

EQS [_030|589*]=[549,577,584-,585,289,689,789] CORE=(589*)

TRIG=[218-,618-,476-] VAL=15

9 SINGLES [824,234,534,235,835,638,646,846,566,667,767,867,874,288,788]

TGT XS44=[737] CORE=(637*,767-,797*) TRIG=[229-,638-,667-,867-,788-] VAL=13 (-4)

21 SINGLES [211,221,222,722,823,738,239,639,742,843,749,852,256,657,

261,262,762,865,876,278,781,881,882,285,293,793,897,799]

TGT XS54=[929] CORE=(924*,949*) TRIG=[823-,824-,843-,449-,549-,749-] VAL=12

26 SINGLES [611,213,914,418,421,821,422,723,224,441,741,841,842,942,

643,748,948,649,656,857,459,661,761,862,866,868,968,477,878]

OPTIMAL SCORE: 495 TOTAL_NODES: 37632

The number of eliminations shrinks to 26, where singles are not counted. Four
alternative eliminations had been used (LX8, LX13, LX18, SE_P32). Candi-
dates marked with “-” are already eliminated at that point (e.g.all trigger
candidates). Negative values enclosed in parenthesis show the difference to
the maximal score. For XS10 this difference is large because of re-use of a
base from XS9. Look at the corresponding input notations.

This example shows that an optimized BERT score is by far lower than the
score of paths generated from a static method orders.

11
M I N I M A L I T Y

This additional chapter is concerned with minimal properties of puzzles.
Although not part of the BERT framework, the same math model is used.
So there is some connection. The importance of minimal candidate ar-
rangements is discussed already in the previous chapters. There are more
interesting aspects of minimality.

11.1 minimal givens

In a Sudoku puzzle with minimal givens none of them can be calculated
from the others. If the Sudoku has a unique solution, all problems with one
given less have multiple solutions. This means that uniqueness is strongly
related to minimality.

There had been a lot of investigations about minimal givens. The many
results are not repeated here.

11.2 minimal equations

The question here is whether all of the 324 defining equations of a (minimal)
Sudoku are necessary to assure that there is a unique solution. The answer is
clearly NO! And it seems that this is the case all the time. This is equivalent
to ask for dropping equations and still retaining the number of solutions.

If we take an arbitrary resolution path of a particular puzzle with a unique
solution, some of the 324 equations do not appear in any of the elimination
steps. This means they are not necessary to fix the values of all candidates.
The natural follow-up question is: what happens if we try drop more equa-
tions from the set of used ones. We will soon come to a situation where we
are unable to find explicit elimination steps that solve the puzzle. But we
can switch to a recursive solver and perform an uniqueness check on subsets
of the 324 native base equations. Reducing the equation set step by step
we finally arrive at a configuration where dropping any of the remaining
equations results in multiple solutions of the puzzle. The minimal equation
set together with the given candidates force all other equations to be satisfied
also. It’s obvious that each candidate must occur in at least one equation.
Otherwise uniqueness is impossible.

An investigation of minimal equations sets of a few dozen puzzles produced
the following completely unexpected results. Starting from stage one, a little
program selects randomly equations and performs uniqueness checks. If the
remaining set has still a unique solution, the selected equation is dropped.
This loops until a minimal set is reached. Such Monte Carlo style procedure
is repeated several times (typically 1000) to generate different minimal sets.

An example puzzle with the associated list of 139 minimal equations follows.
The puzzle has minimal given candidates and is derived from the example
of the previous chapter. The 24 givens leave 57 cells open. The direct
eliminations by the givens relate to 4 ∗ 24 = 96 base equations. These are
not subject of the reduction, because the process starts at stage 1. At this
point there are 222 open candidates and 4 ∗ 57 = 228 nominal base equations.
Some redundant box equations exist, but this is no issue for the reduction.
Finally we have 96 + 139 = 235 equations that lead to a unique solution and
also forcing the remaining 324− 235 = 89 equations to be satisfied.

11.2 minimal equations 74

000007008000061050309000000000010200105090030003400001060070003004003900500000010

456237198782961354319854627647315289125798436893426571961572843274183965538649712

R1C1458,R2C12349,R3C56789,R4C12689,R5C2,R6C12567,R7C13467,R8C489,R9C3579

1R38,2R1359,3R1,4R1249,5R1678,6R134569,7R248,8R24589,9R14679

1C237,2C235689,3C247,4C56789,5C245679,6C369,7C123478,8C12567,9C248

1B18,2B12457,3B5,4B129,5B26,6B589,7B369,8B245679,9B368

11.2.1 Number of Equations

The number of redundant equations was expected to be small, but in fact
the number is much larger, varying between 80 to 100. That means there
is a huge redundancy in the original Sudoku puzzle statement, even if the
puzzle has minimal givens. At this point it remains unclear what kind of
consequences this might have.

11.2.2 Correlation with Severity

The expectation that puzzles with high severity (SER rating value) come
with a larger set of minimal equations was not met. There seem to be no
significant difference for all cases investigated. Even more, some puzzles
with single solutions only needed more equations that others with SER = 10.

Reducing the equation set indeed affects the severity of the restricted puzzle
itself. For a formerly easy to solve puzzle it’s extremely hard to find an
elimination at all after minimalization. Unfortunately there is no solver that
can handle reduced equation sets. So the question remains open how exactly
the severity is altered.

11.2.3 Common Equations

One can expect that all minimal equation sets of the same puzzle have some
common intersection. This is not the case usually. The minimal sets seem to
be very flexible instead. Even if we deliberately exclude a dozen of equations,
there are still plenty of minimal sets with no common intersection.

More and thorough investigation is needed to understand minimal equation
sets.

11.2.4 More Details

Next we can mark some of the equations as base equation only. This means
that only marked equations are able to set candidates to value 1 during the
solving process. It is obvious that the number of base equations is at least
81− #givens, because any candidate with value 1 requires a different base
equation. Now we minimize the base equations in Monte Carlo style. The
surprising result is that the actual number of minimal base equations is near
the lower limit. Again this result seems to be independent of the puzzle
severity (SER).

The minimal base equation configuration does not match the total equation
minimum, but seems to require more link equations. There are more de-
tail questions to ask, but the above issues alone have no really convincing
interpretation. All in all more questions are raised than answered.

12
S U M M A RY

There are many ways to deal with Sudoku puzzles. The view that is expressed
here emphasizes properties rather than methods or procedures. Although
BERT is not “the” Sudoku theory, it has a very broad scope, a reasonable
degree of abstraction and the potential for further refinement. The BERT
concept is not yet another solver, it does not solve puzzles at all. BERT is a
resolution theory that exactly defines which kind of eliminations are fitting
into the concept. This determines the scope. It analyzes existing resolutions
and their eliminations regardless of their origin. The BERT concept works on
basis of very few construction principles and does not depend on what is
traditionally called “method”.

A leading principle is “straightforward logic with no assumptions”. This im-
poses some restrictions on eliminations to be used, but that looks harder than
it actually is. Most eliminations that use contradictions can be transformed
into equivalent straightforward logic.

The BERT concept consists of two main parts. The first comes with a formal
description of a resolution path and its components. A definite algorithm
verifies the correctness of a description. The second part attaches a metric
that allows to compare resolution paths partially or as a whole. The score
value given by the metric is of course only one of the many complexity
aspects the puzzle might have. The score value also relies on some general
principles and has a clear meaning.

A brief list of the main ideas follows.

• The Sudoku puzzle is redefined as a system of 324 arithmetic equations
with integer variables (candidates) of value 0 or 1. Each equation for
rows, columns, boxes of a number and for cells has the value 1.

• The main idea of an abstract definition of eliminations is the sub-puzzle
as a minimal set of equations.

• The pattern definition restricts sub-puzzles further to those that confirm
Z = 0 or B ≥ 1 or L ≤ 1 (Z, B, L any sum of variables) for all solutions
of the sub-puzzle. Note that this is different from the term “pattern”
used elsewhere and denotes an individual arrangement of candidates.

• An equation B ≥ 1 is a base equation and a generalization of a “strong
link”.
An equation L ≤ 1 is a link equation and a generalization of “weak
link”.
An equation Z = 0 is a zero equation and denotes one or more elimina-
tion targets.

• BERT patterns can be calculated by applying special operations on
base and link equations. The operators are well defined and use
arithmetic additions and subtractions of candidates and additionally
some reductions.

• An appropriate notation of eliminations and of intermediate calculation
steps is provided. Steps describe a part of an elimination and may
be re-used in later calculations. More complex elimination patterns
require a description with nested expressions. Only equation variables
appear in any expression notation, but a transformation into candidates
is always possible.

summary 76

• For each elimination pattern there is a score value that is calculated
from the notation in combination with a resolution state where the
pattern is applied. The score value counts the total number of additions
and subtractions performed by the verification algorithm of the pattern.

• The score of a resolution path is calculated by adding the scores of all
steps. Re-used parts are counted only once, emphasizing the benefit of
re-use. Different paths of the same puzzle can be compared by their
score value.

• Each elimination pattern has a life cycle that can be calculated from the
notation. A zero equation containing the trigger variables marks the
earliest point, where the elimination can be applied. An elimination
pattern is dead with no targets left or by destruction of one of its
defining parts.

• The life cycle information allows to re-shuffle the order of steps of
a resolution path or mixing several paths or parts of it. This is the
prerequisite for constructing a resolution path with a lower total score
value.

• The central strategic idea is to apply only elimination steps that enable
at least one follow-up step. This way the resolution path takes the form
of a directed graph that reflects the intrinsic dependencies of the path.

• An optimizer can calculate the minimal score of resolution paths con-
structed from a limited pool of steps. A calculation of the absolute
score minimum of a puzzle is not realistic.

13
F I N A L R E M A R K S

It’s just a start, far form perfect.

Does it make Sudoku easier or more complicated? Yes and no.

BERT adds a new dimension. Solving alone is not enough. Finding efficient
resolutions paths requires to compare and reshuffle lots of paths. This aspect
makes Sudoku clearly more complicated. On the other hand BERT notation
of complex elimination steps are more structured and understandable in my
view.

13.1 outlook

The BERT concept is immediately applicable to other Sudoku variants, with
diagonal base equations, with other shapes of boxes, other sizes.

Generally any problem statement that can be defined by base and link
equations is BERT compatible. Whether or not this is an useful approach for
an arbitrary problem statement of such kind is unknown.

The eight queens puzzle is a good example, if some additional restrictions
assure a unique solution.

13.2 missing things

First of all the lack of mass data makes quantitative or statistical statements
impossible. All examples shown are produced manually. This is tedious even
when using some support tools. The output of existing and available solvers
is either not machine readable or not in a form that allows easy translation
into BERT notation. Solvers are usually not designed for post-processing
their output.

Automatic translation of AIC notation or DB braid notation seems (at least
partially) manageable. A translation of the SudokuExplainer output seems
hopeless. Solvers with graphical output only are even worse.

A generator for graphical presentation of steps (table and/or grid) or for the
path graph is nice to have.

The optimizer allows to step manually through the path, with one-step look
ahead at each state. The automatic mode finds the minimal score of a given
elimination set. Advanced features like detection of re-usable parts are far
away.

A B B R E V I AT I O N S

BE Def: Base Equation

BERT Def: Base Equation Resolution Theory

NBE Def: Native Base Equation

AB Name: Alan Barker

DB Name: Denis Berthier

GSF Name: Glenn Fowler

SPF Web: New Sudoku Player’s Forum

	Preface
	About Sudoku
	Questions and some Answers
	General Remarks
	Current Status of some Issues

	Foundation
	Solution
	Resolution Theory
	The Math Model
	Patterns and Eliminations
	Pattern

	Pattern Calculation
	Easy Examples
	Base Elimination
	Base Array Calculation
	Base Reduction
	Matrix Elimination
	Single Elimination
	Odd Ring Calculations
	Odd Loop Calculation
	Generic Array Calculations

	Base Equation Resolution Theory
	Notation
	Algorithms
	Resolution Path

	Scoring
	Scoring Rules
	Scoring Examples

	Expression Calculations
	Group Links
	Composite Rings
	Cascaded Rings
	Network with Rings
	Calculated Matrix
	Exocet

	Equation Re-Use
	Re-Use of Base Equations
	Double Use
	Partial Re-Use

	Pattern Decomposition
	Fragments
	Translation
	Sub-Expressions

	Strategy
	Simplest First
	One-Step Look Ahead
	Positioning Issues
	Position Independence
	Elimination Life-cycle

	Optimization
	First Results
	Concept
	Input
	Verification
	Optimization Result

	Minimality
	Minimal Givens
	Minimal Equations

	Summary
	Final Remarks
	Outlook
	Missing Things

	Abbreviations

